MATH 224 : COMPLEX ANALYSIS SPRING 2016 HOMEWORK 4

Instructor: GAUTAM BHARALI

Assigned: FEBRUARY 8, 2016

1. Let $\Omega \subset \mathbb{C}$ be a connected open set, let $f \in \mathcal{O}(\Omega)$. Suppose f maps Ω into the circle $\{z \in \mathbb{C} : |z| = R\}$ for some R > 0. Prove that f is a constant.

2. Let $\Omega \subset \mathbb{C}$ be a connected open set. Then $(\mathcal{O}(\Omega), +, \cdot)$ —where + and \cdot denote the usual (pointwise) sum and product of functions—is a ring. Prove that $(\mathcal{O}(\Omega), +, \cdot)$ is an integral domain.

3. Let Ω_1 and Ω_2 be open subsets of \mathbb{C} . Let $f \in \mathcal{O}(\Omega_1)$, let $H : \Omega_2 \longrightarrow \mathbb{R}$ be harmonic on Ω_2 and suppose $f(\Omega_1) \subset \Omega_2$. Is $H \circ f$ harmonic?

4–5. Problem 9 from the exercises to IV–Secn. 3, and Problem 3 from the exercises to IV–Secn. 4 of Conway.

6. For a function $f : \mathbb{C} \longrightarrow \mathbb{C}$, we say that **f** has two periods if there exist two complex numbers w_1 and w_2 such that

- the pair $\{w_1, w_2\}$ is \mathbb{R} -linearly-independent; and
- $f(z+w_1) = f(z) = f(z+w_2) \ \forall z \in \mathbb{C}.$

Describe the set of all entire functions having two periods.