MATH 224 : COMPLEX ANALYSIS
 SPRING 2016
 HOMEWORK 4

1. Let $\Omega \subset \mathbb{C}$ be a connected open set, let $f \in \mathcal{O}(\Omega)$. Suppose f maps Ω into the circle $\{z \in \mathbb{C}$: $|z|=R\}$ for some $R>0$. Prove that f is a constant.
2. Let $\Omega \subset \mathbb{C}$ be a connected open set. Then $(\mathcal{O}(\Omega),+, \cdot)$ - where + and \cdot denote the usual (pointwise) sum and product of functions - is a ring. Prove that $(\mathcal{O}(\Omega),+, \cdot)$ is an integral domain.
3. Let Ω_{1} and Ω_{2} be open subsets of \mathbb{C}. Let $f \in \mathcal{O}\left(\Omega_{1}\right)$, let $H: \Omega_{2} \longrightarrow \mathbb{R}$ be harmonic on Ω_{2} and suppose $f\left(\Omega_{1}\right) \subset \Omega_{2}$. Is $H \circ f$ harmonic?
4-5. Problem 9 from the exercises to IV-Secn. 3, and Problem 3 from the exercises to IV-Secn. 4 of Conway.
4. For a function $f: \mathbb{C} \longrightarrow \mathbb{C}$, we say that \boldsymbol{f} has two periods if there exist two complex numbers w_{1} and w_{2} such that

- the pair $\left\{w_{1}, w_{2}\right\}$ is \mathbb{R}-linearly-independent; and
- $f\left(z+w_{1}\right)=f(z)=f\left(z+w_{2}\right) \forall z \in \mathbb{C}$.

Describe the set of all entire functions having two periods.

