MATH 224 : COMPLEX ANALYSIS SPRING 2016 HOMEWORK 8

Instructor: GAUTAM BHARALI

Assigned: MARCH 18, 2016

1. Choosing appropriate piecewise-smooth closed curves in \mathbb{C} , work out the **real** integrals given in problems 2(c), 2(d), 2(e) and 2(g) from the exercises to V–Secn. 2 of Conway.

2–3. Problems 6 and 7 from the exercises to V–Secn. 2 of Conway.

In what follows, $\widehat{\mathbb{C}}$ will denote the one-point compactification of \mathbb{C} . Then:

- Recall that the sets $(Ann(0; R, +\infty) \cup \{\infty\})$ are basic open sets in the topology of $\widehat{\mathbb{C}}$.
- For a subset $S \subset \widehat{\mathbb{C}}, \overline{S}^{\infty}$ denotes the closure of S in the topology of $\widehat{\mathbb{C}}$.
- For a subset $S \subset \widehat{\mathbb{C}}$, $\partial_{\infty}S$ denotes the boundary of S in the topology of $\widehat{\mathbb{C}}$, i.e.,

$$\partial_{\infty}S := \overline{S}^{\infty} \setminus S$$

4. Let $\phi: \Omega \longrightarrow \mathbb{R}$ and let $p \in \overline{\Omega}^{\infty}$. Define

$$\limsup_{z \to p} \phi(z) \, := \, \lim_{r \to 0^+} \sup \{ \phi(z) : z \in \Omega \cap U(p;r) \}$$

where

$$U(p;r) := \begin{cases} D(p;r)^*, & \text{if } p \in \mathbb{C}, \\ \mathsf{Ann}(0; 1/r, +\infty), & \text{if } p = \infty \end{cases}$$

Show that the limit on the right-hand side of the definition exists (in the **extended** real-line). **Remark.** The above definition makes a small correction to the definition given in Chapter VI of Conway (and a **major** correction to that in the 1st Edition, where ϕ occurs as complex-valued).

5. Complete the outline below to prove the following:

Maximum Modulus Theorem. Let Ω be a domain in \mathbb{C} and $f \in \mathcal{O}(\Omega)$. Suppose there there exists a number M > 0 such that $\limsup_{z \to p} |f(z)| \leq M$ for every $p \in \partial_{\infty} \Omega$. Then, $|f| \leq M$.

Step 1. Fix a $\delta > 0$. Show that there is an open set $V(\delta)$ —open in the topology of $\widehat{\mathbb{C}}$ —such that $\partial_{\infty} \Omega \subset V(\delta)$ and $|f(z)| < M + \delta$ for every $z \in \Omega \cap V(\delta)$.

Step 2. Now define

 $H_{\delta} := \{ z \in \Omega : |f(z)| > M + \delta \}.$

Prove that H_{δ} is open and bounded.

Step 3. Assume that $H_{\delta} \neq \emptyset$ and obtain a contradiction.

- Step 4. Now complete the proof.
 - **6.** Let p be a non-constant polynomial, let $n = \deg(p)$, and let R > 0.
 - a) Show that each connected component of $\{z \in \mathbb{C} : |p(z)| < R\}$ is bounded.
 - b) Show that the set $\{z \in \mathbb{C} : |p(z)| < R\}$ cannot have more than n connected components.
 - 7. Problem 2 from the exercises to VI–Secn. 2 of Conway.