MA 328 : INTRODUCTION TO SEVERAL COMPLEX VARIABLES AUTUMN 2019 HOMEWORK 1

Instructor: GAUTAM BHARALI

DUE: Tuesday, Sep. 17, 2019

Note:

- a) You are allowed to discuss these problems with your classmates, but individually-written and **original** write-ups are expected for submission. Please **acknowledge** any persons from whom you received help in solving these problems.
- b) Given a multi-index $\alpha \in \mathbb{N}^n$, we shall use the following notation:

$$\begin{aligned} |\alpha| &:= \alpha_1 + \dots + \alpha_n \quad \text{and} \quad \alpha! := \alpha_1! \dots \alpha_n!, \\ z^{\alpha} &:= z_1^{\alpha_1} \dots z_n^{\alpha_n}, \\ \frac{\partial^{|\alpha|}}{\partial z^{\alpha}} &:= \frac{\partial^{|\alpha|}}{\partial z_1^{\alpha_1} \dots \partial z_n^{\alpha_n}}. \end{aligned}$$

1. For each $z \in \mathbb{C}^n$, write $z_j = x_j + iy_j$, $x_j, y_j \in \mathbb{R}$, and denote this correspondence between \mathbb{C}^n and \mathbb{R}^{2n} as $\mathbb{C}^n \leftrightarrow \mathbb{R}^{2n}$. Let $\mathcal{B}^n := (\epsilon_1, \ldots, \epsilon_n)$ be the standard ordered basis on \mathbb{C}^n . Let $\mathcal{B}^{2n}(\mathbb{R}) = (e_1, e_2, \ldots, e_{2n})$ be the \mathbb{R} -basis of \mathbb{R}^{2n} with the properties:

$$\epsilon_j \leftrightarrow e_{2j-1},$$

 $i\epsilon_j \leftrightarrow e_{2j}, \quad j = 1, \dots n.$

Let $T: \mathbb{R}^{2n} \longrightarrow \mathbb{R}^2$ be a **real** linear transformation and let

$$[T]_{\mathcal{B}^{2n}(\mathbb{R}), \mathcal{B}^{2}(\mathbb{R})} = \begin{bmatrix} a_{11} & b_{11} & a_{12} & b_{12} & \dots & a_{1n} & b_{1n} \\ a_{21} & b_{21} & a_{22} & b_{22} & \dots & a_{2n} & b_{2n} \end{bmatrix}$$

be the matrix representation of T with respect to the \mathbb{R} -bases defined above. Show that T is \mathbb{C} -linear from \mathbb{C}^n to \mathbb{C}

if and only if
$$\begin{cases} a_{1j} = b_{2j}, \\ a_{2j} = -b_{1j}, \quad j = 1, \dots, n. \end{cases}$$

2. Consider the power series

$$\sum_{\alpha \in \mathbb{N}^n} C_{\alpha} z^{\alpha}$$

Let $\xi = (\xi_1, \ldots, \xi_n) \in \mathbb{C}^n$ be such that $\xi_j \neq 0, j = 1, \ldots, n$, and suppose the above power series converges absolutely at ξ . Then, show that this power series converges uniformly on the closed polydisc $\overline{\Delta}$ —where $\Delta := D(0; |\xi_1|) \times \cdots \times D(0; |\xi_n|)$ —and absolutely at every point in $\overline{\Delta}$.

3. Let $\Omega \subseteq \mathbb{C}^n$, $n \geq 2$, be an open set and let $f, g : \Omega \longrightarrow \mathbb{C}$ be \mathbb{C} -differentiable. Show that fg is \mathbb{C} -differentiable.

4. Let $X_1, \ldots, X_n \in \mathbb{C}$ and suppose $|X_j| < 1$ for $j = 1, \ldots, n$. Show that $\sum_{\alpha \in \mathbb{N}^n} X^{\alpha}$ is absolutely convergent and that

$$\sum_{\alpha \in \mathbb{N}^n} X^{\alpha} = \prod_{j=1}^n \left(\sum_{\nu \in \mathbb{N}} X_j^{\nu} \right).$$

Hint. Although this is **not** the **only** approach to the solution, consider defining an auxiliary function that you know is holomorphic on \mathbb{D}^n , \mathbb{D} being the open unit disc with centre $0 \in \mathbb{C}$.

5. Let Ω be an open subset of \mathbb{C}^n and let $f : \Omega \longrightarrow \mathbb{C}$ be holomorphic. Let $a \in \Omega$. Let $(r_1, \ldots, r_n) \in (\mathbb{R}_+)^n$ be such that

$$\overline{D(a_1;r_1)\times\cdots\times D(0;r_n)}\subset\Omega.$$

Argue that

$$\frac{\partial^{|\alpha|} f}{\partial z^{\alpha}}(a) = \frac{\alpha!}{(2\pi i)^n} \int_{\partial D(a_1; r_1)} \dots \int_{\partial D(a_n; r_n)} \frac{f(w)}{\prod_{j=1}^n (w_j - a_j)^{\alpha_j + 1}} \, dw_n \dots dw_1$$

6. Prove Liouville's theorem in \mathbb{C}^n , $n \geq 2$, without using Cauchy's estimates.

7. Prove the Maximum Modulus Theorem, i.e., the following:

Theorem. Let Ω be a domain in \mathbb{C}^n and let $f : \Omega \longrightarrow \mathbb{C}$ be holomorphic. Suppose there exists a point $a \in \Omega$ and a neighbourhood $U \subseteq \Omega$ of a such that $|f(z)| \leq |f(a)| \quad \forall z \in U$. Then f is a constant.

for the case $n \ge 2$ without appealing to the Open Mapping Theorem. (You can use the univariate Maximum Modulus Theorem without proof.)

8. Prove the following version of Leibniz's Theorem:

Theorem. Let M be a smooth, connected, orientable manifold and let $\phi : M \times \Omega \longrightarrow \mathbb{C}$, where Ω is a domain in \mathbb{R}^N . Let m denote a "Lebesgue measure" on M (i.e., **fix** a volume form that a choice of orientation on M gives rise to, and use this as a gauge to get m for any Borel subset of M). Suppose:

- a) $\phi \in \mathcal{C}(M \times \Omega);$
- b) $\phi(\cdot, y) \in \mathbb{L}^1(M, m)$ for each $y \in \Omega$;
- c) $\partial \phi / \partial y_j$ exists for $j = 1, \dots, N$ and

$$\frac{\partial \phi}{\partial y_j} \in \mathcal{C}(M \times \Omega) \text{ for } j = 1, \dots, N;$$

d) For each $y \in \Omega$ and $j = 1, \ldots, N$,

$$\frac{\partial \phi}{\partial y_j}(\cdot, y) \in \mathbb{L}^1(M, m)$$

Then, the function

$$\psi(y) \, := \, \int_M \phi(x,y) \, dm(x) \ \, \forall y \in \Omega$$

is well-defined and of class $\mathcal{C}^1(\Omega)$. Furthermore, we obtain $\partial \phi / \partial y_j$ by differentiating under the integral sign.

In the next two problems, \mathbb{D} will denote the open unit disc with centre $0 \in \mathbb{C}$.

9. Let Ω be a connected, open neighbourhood of the set $\mathbf{H} := \overline{\mathbb{D}} \times \{0_{\mathbb{C}^{n-1}}\} \cup \partial \mathbb{D} \times \mathbb{D}^{n-1}, n \geq 2$. Define:

 $\mathscr{C} :=$ the set of connected components of $(\overline{\mathbb{D}} \times \mathbb{D}^{n-1}) \cap \Omega$ that do *not* contain **H**,

 $\omega \, := \, \big[\text{the connected component of } (\overline{\mathbb{D}} \times \mathbb{D}^{n-1}) \cap \Omega \text{ that contains } \mathbf{H} \big]^{\circ},$

$$\widetilde{\Omega} := \mathbb{D}^n \bigcup \left(\Omega \setminus \left(\overline{\bigcup_{V \in \mathscr{C}} V} \right) \right).$$

Show that for each $f \in \mathcal{O}(\Omega)$, there exists a function $F_f \in \mathcal{O}(\widetilde{\Omega})$ such that $F_f|_{\omega} = f|_{\omega}$.

10. Given two domains Ω_1 and Ω_2 in \mathbb{C}^n , a holomorphic map $F : \Omega_1 \longrightarrow \Omega_2$ is called a *biholomorphism* if F is bijective and F^{-1} is also holomorphic. Given a domain Ω in \mathbb{C}^n , an *automorphism of* Ω is a biholomorphism of Ω onto itself. Now, describe all the automorphisms of $(\mathbb{D} \times \mathbb{C})$.