MA 328 : INTRODUCTION TO SEVERAL COMPLEX vARIABLES AUTUMN 2019
 HOMEWORK 1

Instructor: GAUTAM BHARALI
DUE: Tuesday, Sep. 17, 2019

Note:

a) You are allowed to discuss these problems with your classmates, but individually-written and original write-ups are expected for submission. Please acknowledge any persons from whom you received help in solving these problems.
b) Given a multi-index $\alpha \in \mathbb{N}^{n}$, we shall use the following notation:

$$
\begin{aligned}
|\alpha| & :=\alpha_{1}+\cdots+\alpha_{n} \text { and } \alpha!:=\alpha_{1}!\ldots \alpha_{n}!, \\
z^{\alpha} & :=z_{1}^{\alpha_{1}} \ldots z_{n}^{\alpha_{n}}, \\
\frac{\partial^{\alpha \alpha \mid}}{\partial z^{\alpha}} & :=\frac{\partial^{|\alpha|}}{\partial z_{1}^{\alpha_{1}} \ldots \partial z_{n}^{\alpha_{n}}} .
\end{aligned}
$$

1. For each $z \in \mathbb{C}^{n}$, write $z_{j}=x_{j}+i y_{j}, x_{j}, y_{j} \in \mathbb{R}$, and denote this correspondence between \mathbb{C}^{n} and $\mathbb{R}^{2 n}$ as $\mathbb{C}^{n} \leftrightarrow \mathbb{R}^{2 n}$. Let $\mathcal{B}^{n}:=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$ be the standard ordered basis on \mathbb{C}^{n}. Let $\mathcal{B}^{2 n}(\mathbb{R})=\left(e_{1}, e_{2}, \ldots, e_{2 n}\right)$ be the \mathbb{R}-basis of $\mathbb{R}^{2 n}$ with the properties:

$$
\begin{aligned}
\epsilon_{j} & \leftrightarrow e_{2 j-1} \\
i \epsilon_{j} & \leftrightarrow e_{2 j}, \quad j=1, \ldots n
\end{aligned}
$$

Let $T: \mathbb{R}^{2 n} \longrightarrow \mathbb{R}^{2}$ be a real linear transformation and let

$$
[T]_{\mathcal{B}^{2 n}(\mathbb{R}), \mathcal{B}^{2}(\mathbb{R})}=\left[\begin{array}{llllll}
a_{11} & b_{11} & a_{12} & b_{12} & \ldots a_{1 n} & b_{1 n} \\
a_{21} & b_{21} & a_{22} & b_{22} & \ldots a_{2 n} & b_{2 n}
\end{array}\right]
$$

be the matrix representation of T with respect to the \mathbb{R}-bases defined above. Show that T is \mathbb{C}-linear from \mathbb{C}^{n} to \mathbb{C}

$$
\text { if and only if }\left\{\begin{array}{l}
a_{1 j}=b_{2 j}, \\
a_{2 j}=-b_{1 j}, \quad j=1, \ldots, n
\end{array}\right.
$$

2. Consider the power series

$$
\sum_{\alpha \in \mathbb{N}^{n}} C_{\alpha} z^{\alpha}
$$

Let $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{C}^{n}$ be such that $\xi_{j} \neq 0, j=1, \ldots, n$, and suppose the above power series converges absolutely at ξ. Then, show that this power series converges uniformly on the closed polydisc $\bar{\Delta}$ - where $\Delta:=D\left(0 ;\left|\xi_{1}\right|\right) \times \cdots \times D\left(0 ;\left|\xi_{n}\right|\right)$ — and absolutely at every point in $\bar{\Delta}$.
3. Let $\Omega \subseteq \mathbb{C}^{n}, n \geq 2$, be an open set and let $f, g: \Omega \longrightarrow \mathbb{C}$ be \mathbb{C}-differentiable. Show that $f g$ is \mathbb{C}-differentiable.
4. Let $X_{1}, \ldots X_{n} \in \mathbb{C}$ and suppose $\left|X_{j}\right|<1$ for $j=1, \ldots, n$. Show that $\sum_{\alpha \in \mathbb{N}^{n}} X^{\alpha}$ is absolutely convergent and that

$$
\sum_{\alpha \in \mathbb{N}^{n}} X^{\alpha}=\prod_{j=1}^{n}\left(\sum_{\nu \in \mathbb{N}} X_{j}^{\nu}\right)
$$

Hint. Although this is not the only approach to the solution, consider defining an auxiliary function that you know is holomorphic on $\mathbb{D}^{n}, \mathbb{D}$ being the open unit disc with centre $0 \in \mathbb{C}$.
5. Let Ω be an open subset of \mathbb{C}^{n} and let $f: \Omega \longrightarrow \mathbb{C}$ be holomorphic. Let $a \in \Omega$. Let $\left(r_{1}, \ldots, r_{n}\right) \in\left(\mathbb{R}_{+}\right)^{n}$ be such that

$$
\overline{D\left(a_{1} ; r_{1}\right) \times \cdots \times D\left(0 ; r_{n}\right)} \subset \Omega
$$

Argue that

$$
\frac{\partial^{|\alpha|} f}{\partial z^{\alpha}}(a)=\frac{\alpha!}{(2 \pi i)^{n}} \int_{\partial D\left(a_{1} ; r_{1}\right)} \ldots \int_{\partial D\left(a_{n} ; r_{n}\right)} \frac{f(w)}{\prod_{j=1}^{n}\left(w_{j}-a_{j}\right)^{\alpha_{j}+1}} d w_{n} \ldots d w_{1}
$$

6. Prove Liouville's theorem in $\mathbb{C}^{n}, n \geq 2$, without using Cauchy's estimates.
7. Prove the Maximum Modulus Theorem, i.e., the following:

Theorem. Let Ω be a domain in \mathbb{C}^{n} and let $f: \Omega \longrightarrow \mathbb{C}$ be holomorphic. Suppose there exists a point $a \in \Omega$ and a neighbourhood $U \subseteq \Omega$ of a such that $|f(z)| \leq|f(a)| \forall z \in U$. Then f is a constant.
for the case $n \geq 2$ without appealing to the Open Mapping Theorem. (You can use the univariate Maximum Modulus Theorem without proof.)
8. Prove the following version of Leibniz's Theorem:

Theorem. Let M be a smooth, connected, orientable manifold and let $\phi: M \times \Omega \longrightarrow \mathbb{C}$, where Ω is a domain in \mathbb{R}^{N}. Let m denote a "Lebesgue measure" on M (i.e., fix a volume form that a choice of orientation on M gives rise to, and use this as a gauge to get m for any Borel subset of M). Suppose:
a) $\phi \in \mathcal{C}(M \times \Omega)$;
b) $\phi(\cdot, y) \in \mathbb{L}^{1}(M, m)$ for each $y \in \Omega$;
c) $\partial \phi / \partial y_{j}$ exists for $j=1, \ldots, N$ and

$$
\frac{\partial \phi}{\partial y_{j}} \in \mathcal{C}(M \times \Omega) \text { for } j=1, \ldots, N
$$

d) For each $y \in \Omega$ and $j=1, \ldots, N$,

$$
\frac{\partial \phi}{\partial y_{j}}(\cdot, y) \in \mathbb{L}^{1}(M, m)
$$

Then, the function

$$
\psi(y):=\int_{M} \phi(x, y) d m(x) \forall y \in \Omega
$$

is well-defined and of class $\mathcal{C}^{1}(\Omega)$. Furthermore, we obtain $\partial \phi / \partial y_{j}$ by differentiating under the integral sign.

In the next two problems, \mathbb{D} will denote the open unit disc with centre $0 \in \mathbb{C}$.
9. Let Ω be a connected, open neighbourhood of the set $\mathbf{H}:=\overline{\mathbb{D}} \times\left\{0_{\mathbb{C}^{n-1}}\right\} \cup \partial \mathbb{D} \times \mathbb{D}^{n-1}, n \geq 2$. Define:

$$
\begin{aligned}
\mathscr{C} & :=\text { the set of connected components of }\left(\overline{\mathbb{D}} \times \mathbb{D}^{n-1}\right) \cap \Omega \text { that do not contain } \mathbf{H}, \\
\omega & :=\left[\text { the connected component of }\left(\overline{\mathbb{D}} \times \mathbb{D}^{n-1}\right) \cap \Omega \text { that contains } \mathbf{H}\right]^{\circ}, \\
\widetilde{\Omega} & :=\mathbb{D}^{n} \bigcup\left(\Omega \backslash\left(\overline{\bigcup_{V \in \mathscr{C}} V}\right)\right) .
\end{aligned}
$$

Show that for each $f \in \mathcal{O}(\Omega)$, there exists a function $F_{f} \in \mathcal{O}(\widetilde{\Omega})$ such that $\left.F_{f}\right|_{\omega}=\left.f\right|_{\omega}$.
10. Given two domains Ω_{1} and Ω_{2} in \mathbb{C}^{n}, a holomorphic map $F: \Omega_{1} \longrightarrow \Omega_{2}$ is called a biholomorphism if F is bijective and F^{-1} is also holomorphic. Given a domain Ω in \mathbb{C}^{n}, an automorphism of Ω is a biholomorphism of Ω onto itself. Now, describe all the automorphisms of $(\mathbb{D} \times \mathbb{C})$.

