

MA 328 : INTRODUCTION TO SEVERAL COMPLEX VARIABLES
AUTUMN 2019
HOMEWORK 2

Instructor: GAUTAM BHARALI

DUE: Saturday, Oct. 5, 2019

Note:

- a) You are allowed to discuss these problems with your classmates, but individually-written and **original** write-ups are expected for submission. Please **acknowledge** any persons from whom you received help in solving these problems.
- b) Given a multi-index $\alpha \in \mathbb{N}^n$, we shall use the following notation:

$$\begin{aligned} |\alpha| &:= \alpha_1 + \cdots + \alpha_n, \\ \alpha! &:= \alpha_1! \cdots \alpha_n!, \\ z^\alpha &:= z_1^{\alpha_1} \cdots z_n^{\alpha_n}. \end{aligned}$$

1. Show that the $\bar{\partial}$ -problem

$$\frac{\partial u}{\partial \bar{z}} = \phi,$$

where $\phi \in \mathcal{C}_c^1(\mathbb{C})$ does **not** necessarily have a compactly-supported solution.

Hint. First consider the solution

$$u(z) = -\frac{1}{\pi} \int_{\mathbb{C}} \frac{\phi(w)}{w-z} dA(w),$$

for an appropriately chosen ϕ .

2. Provide details for the outline below to show that any open set $\Omega \subsetneq \mathbb{C}$ is a domain of holomorphy:

- a) Construct a sequence $\{a_\nu\}_{\nu \in \mathbb{N}} \subset \Omega$ that has no limit points in Ω and such that $\overline{\{a_\nu : \nu \in \mathbb{N}\}} \setminus \{a_\nu : \nu \in \mathbb{N}\} = \partial\Omega$.
- b) State **clearly** a suitable theorem from the function theory in one complex variable to construct a function $\varphi \in \mathcal{O}(\Omega)$ such that $\varphi \not\equiv 0$ and $\varphi(a_\nu) = 0$ for $\nu = 0, 1, 2, \dots$
- c) Show that it is **impossible** to find any pair of open sets (U, V) such that $\emptyset \neq U \subset V \cap \Omega$, V is connected, and $V \not\subset \Omega$, such that $\varphi|_U$ extends to function $F_\varphi \in \mathcal{O}(V)$.

3. The *Hartogs triangle* is the domain in \mathbb{C}^2 given by:

$$\Omega := \{(z, w) \in \mathbb{C}^2 : |z| < |w| < 1\}.$$

Show that Ω is a domain of holomorphy. For $\varepsilon > 0$, the set $\cup_{z \in \bar{\Omega}} B^n(z; \varepsilon)$ —where $B^n(z; \varepsilon)$ denotes the open Euclidean ball of radius ε with centre z —is called an ε -neighbourhood of $\bar{\Omega}$. Show that for $\varepsilon > 0$ sufficiently small, no ε -neighbourhood of $\bar{\Omega}$ is a domain of holomorphy.

4. Consider the function $f(z, w) := \frac{1}{1-(z+w)}$.

a) Find the power-series development of f in some small neighbourhood of $(0, 0) \in \mathbb{C}^2$.
b) Find the domain of convergence of the series that you computed in part (a).

5. Let S denote the power series $\sum_{\alpha \in \mathbb{N}^n} a_\alpha z^\alpha$ and let $\mathcal{C}(S)$ denote its domain of convergence. Let

$$\Lambda(\mathcal{C}(S)) := \{x = (x_1, \dots, x_n) \in \mathbb{R}^n : (e^{x_1}, \dots, e^{x_n}) \in \mathcal{C}(S)\}.$$

Show that:

a) $\Lambda(\mathcal{C}(S))$ is open.
b) If $z \in \mathcal{C}(S)$, then there exists an $x \in \Lambda(\mathcal{C}(S))$ such that $|z_j| \leq e^{x_j}$ for $j = 1, \dots, n$.

6. Let $n \geq 2$, $0 < r < 1$, and write

$$\Omega := (D(0; r) \times \mathbb{D}^{n-1}) \cup (\mathbb{D}^{n-1} \times D(0; r)).$$

Describe **explicitly**, in terms of r , a Reinhardt domain $\tilde{\Omega} \supsetneq \Omega$ such that for each $f \in \mathcal{O}(\Omega)$, there exists $F_f \in \mathcal{O}(\tilde{\Omega})$ such that $F_f|_{\Omega} = f$.

7. Let Ω_1 and Ω_2 be domains in \mathbb{C}^n and let $F : \Omega_1 \rightarrow \Omega_2$ be a biholomorphism of Ω_1 onto Ω_2 . Show that if Ω_1 is a domain of holomorphy, then so is Ω_2 .

8. Let $\Omega_j \subseteq \mathbb{C}^{n_j}$, $j = 1, 2$, be domains of holomorphy. Show that the open set $\Omega_1 \times \Omega_2$ is a domain of holomorphy.

9. Let $F : \mathbb{C}^n \rightarrow \mathbb{C}^n$ be a holomorphic map, let $\Omega \subsetneq \mathbb{C}^n$ be a domain of holomorphy, and suppose $F^{-1}(\Omega)$ is bounded. Prove that $F^{-1}(\Omega)$ is a domain of holomorphy.