MA 328 : INTRODUCTION TO SEVERAL COMPLEX VARIABLES AUTUMN 2019 HOMEWORK 2

Instructor: GAUTAM BHARALI

DUE: Saturday, Oct. 5, 2019

Note:

- a) You are allowed to discuss these problems with your classmates, but individually-written and **original** write-ups are expected for submission. Please **acknowledge** any persons from whom you received help in solving these problems.
- b) Given a multi-index $\alpha \in \mathbb{N}^n$, we shall use the following notation:

$$\begin{aligned} |\alpha| &:= \alpha_1 + \dots + \alpha_n \,, \\ \alpha! &:= \alpha_1! \dots \alpha_n! \,, \\ z^{\alpha} &:= z_1^{\alpha_1} \dots z_n^{\alpha_n} \,. \end{aligned}$$

1. Show that the $\overline{\partial}$ -problem

$$\frac{\partial u}{\partial \overline{z}} = \phi,$$

where $\phi \in C^1_{c}(\mathbb{C})$ does **not** necessarily have a compactly-supported solution. **Hint.** First consider the solution

$$u(z) = -\frac{1}{\pi} \int_{\mathbb{C}} \frac{\phi(w)}{w-z} dA(w),$$

for an appropriately chosen ϕ .

- **2.** Provide details for the outline below to show that any open set $\Omega \subsetneq \mathbb{C}$ is a domain of holomorphy:
 - a) Construct a sequence $\{a_{\nu}\}_{\nu \in \mathbb{N}} \subset \Omega$ that has no limit points in Ω and such that $\overline{\{a_{\nu} : \nu \in \mathbb{N}\}} \setminus \{a_{\nu} : \nu \in \mathbb{N}\} = \partial \Omega$.
 - b) State **clearly** a suitable theorem from the function theory in one complex variable to construct a function $\varphi \in \mathcal{O}(\Omega)$ such that $\varphi \not\equiv 0$ and $\varphi(a_{\nu}) = 0$ for $\nu = 0, 1, 2, ...$
 - c) Show that it is **impossible** to find any pair of open sets (U, V) such that $\emptyset \neq U \subset V \cap \Omega$, V is connected, and $V \not\subseteq \Omega$, such that $\varphi|_U$ extends to function $F_{\varphi} \in \mathcal{O}(V)$.
- **3.** The *Hartogs triangle* is the domain in \mathbb{C}^2 given by:

$$\Omega := \{ (z, w) \in \mathbb{C}^2 : |z| < |w| < 1 \}.$$

Show that Ω is a domain of holomorphy. For $\varepsilon > 0$, the set $\cup_{z \in \overline{\Omega}} B^n(z; \varepsilon)$ —where $B^n(z; \varepsilon)$ denotes the open Euclidean ball of radius ε with centre z—is called an ε -neighbourhood of $\overline{\Omega}$. Show that for $\varepsilon > 0$ sufficiently small, no ε -neighbourhood of $\overline{\Omega}$ is a domain of holomorphy.

4. Consider the function $f(z, w) := \frac{1}{1 - (z+w)}$.

- a) Find the power-series development of f in some small neighbourhood of $(0,0) \in \mathbb{C}^2$.
- b) Find the domain of convergence of the series that you computed in part (a).

5. Let S denote the power series $\sum_{\alpha \in \mathbb{N}^n} a_\alpha z^\alpha$ and let $\mathscr{C}(S)$ denote it domain of convergence. Let

$$\Lambda(\mathscr{C}(S)) := \{ x = (x_1, \dots, x_n) \in \mathbb{R}^n : (e^{x_1}, \dots, e^{x_n}) \in \mathscr{C}(S) \}.$$

Show that:

- a) $\Lambda(\mathscr{C}(S))$ is open.
- b) If $z \in \mathscr{C}(S)$, then there exists an $x \in \Lambda(\mathscr{C}(S))$ such that $|z_j| \leq e^{x_j}$ for $j = 1, \ldots, n$.
- **6.** Let $n \ge 2, 0 < r < 1$, and write

$$\Omega := \left(D(0;r) \times \mathbb{D}^{n-1} \right) \cup \left(\mathbb{D}^{n-1} \times D(0;r) \right).$$

Describe **explicitly**, in terms of r, a Reinhardt domain $\widetilde{\Omega} \supseteq \Omega$ such that for each $f \in \mathcal{O}(\Omega)$, there exists $F_f \in \mathcal{O}(\widetilde{\Omega})$ such that $F_f|_{\Omega} = f$.

7. Let Ω_1 and Ω_2 be domains in \mathbb{C}^n and let $F : \Omega_1 \longrightarrow \Omega_2$ be a biholomorphism of Ω_1 onto Ω_2 . Show that if Ω_1 is a domain of holomorphy, then so is Ω_2 .

8. Let $\Omega_j \subseteq \mathbb{C}^{n_j}$, j = 1, 2, be domains of holomorphy. Show that the open set $\Omega_1 \times \Omega_2$ is a domain of holomorphy.

9. Let $F : \mathbb{C}^n \longrightarrow \mathbb{C}^n$ be a holomorphic map, let $\Omega \subsetneq \mathbb{C}^n$ be a domain of holomorphy, and suppose $F^{-1}(\Omega)$ is bounded. Prove that $F^{-1}(\Omega)$ is a domain of holomorphy.