MA 328 : INTRODUCTION TO SEVERAL COMPLEX VARIABLES AUTUMN 2019

 HOMEWORK 3

 HOMEWORK 3}

Instructor: GAUTAM BHARALI

DUE: Thursday, Nov. 21, 2019

Note:

a) You are allowed to discuss these problems with your classmates, but individually-written and original write-ups are expected for submission. Please acknowledge any persons from whom you received help in solving these problems.
b) Given a multi-index $\alpha \in \mathbb{N}^{n}$, we shall use the following notation:

$$
\begin{aligned}
|\alpha| & :=\alpha_{1}+\cdots+\alpha_{n} \\
\alpha! & :=\alpha_{1}!\ldots \alpha_{n}! \\
z^{\alpha} & :=z_{1}^{\alpha_{1}} \ldots z_{n}^{\alpha_{n}} .
\end{aligned}
$$

c) The notation $I \in \mathscr{I}_{q}$ means that I is an increasing q-tuple in $\{1, \ldots, n\}^{q}$.

1. Let Ω be a non-empty open subset of $\mathbb{R}^{N}, N \geq 2$, and $u: \Omega \longrightarrow[-\infty,+\infty)$ be an uppersemicontinuous function. Show that u is subharmonic if and only if for each open Euclidean ball $\underline{B} \Subset \Omega$, given any function h that is harmonic on an open ball B^{*} concentric to B such that $\bar{B} \nsubseteq B^{*} \subseteq \Omega$ and satisfies $\left.h\right|_{\partial B} \geq\left. u\right|_{\partial B}$, we have

$$
h(x) \geq u(x) \quad \forall x \in B
$$

Hint. Consider an appropriate topological consequence of upper-semicontinuity.
2. Let Ω be a non-empty open subset of \mathbb{C}. Let A be a non-empty set and suppose the family $\left\{u_{\alpha}\right\}_{\alpha \in A} \subset \operatorname{subh}(\Omega)$. Assume that for each $\alpha \in A, u_{\alpha} \not \equiv-\infty$ on each connected component of Ω. If the function

$$
U(z):=\sup _{\alpha \in A} u_{\alpha}(z) \quad \forall z \in \Omega
$$

is upper-semicontinuous, then show that $U \in \operatorname{subh}(\Omega)$.
Note. The condition on the behaviour of u_{α} on each of the connected components of Ω is not required.
3. Let Ω be a non-empty open subset of \mathbb{C}^{n} and let U be plurisubharmonic on Ω. Prove that for each $a \in \Omega, U(a)=\lim \sup _{z \rightarrow a} U(z)$.
4. This problem is meant to demonstrate an analytical characterization of convexity of smoothlybounded domains. To this end, consider a domain $\Omega \varsubsetneqq \mathbb{R}^{N}, N \geq 2$, with \mathcal{C}^{2}-smooth boundary, and provide details for the following outline. Fix a defining function ϱ of class \mathcal{C}^{2}. Let $p \in \partial \Omega$.
(a) Describe an explicit affine change of coordinate $\tau: \mathbb{R}^{N} \longrightarrow \mathbb{R}^{N}$ such that $\tau(p)=0$ and, using the notation

$$
\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right]:=\tau\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{N}
\end{array}\right]
$$

we have $D \tau(p)(\nabla \varrho(p))=\|\nabla \varrho(p)\|(0, \ldots, 0,-1)$ and $D \tau(p): T_{p}(\partial \Omega) \longrightarrow\left\{y \in \mathbb{R}^{N}: y_{N}=0\right\}$.
(b) Re-express the equation of $\partial \Omega$ in $\left(y_{1}, \ldots, y_{N}\right)$-coordinates: i.e., show that there exists an open ball B centred at $y=0$ and a function $\varphi:\left(B \cap\left\{y: y_{N}=0\right\}\right) \longrightarrow \mathbb{R}$ such that

$$
\partial(\tau(\Omega)) \cap B=\left\{y \in B: y_{N}=\varphi\left(y_{1}, \ldots, y_{N-1}\right)\right\}
$$

(c) From (a) and (b), deduce that Ω is convex if and only if

$$
\sum_{j, k=1}^{N} \frac{\partial^{2} \varrho}{\partial x_{j} \partial x_{k}}(p) V_{j} V_{k} \geq 0 \quad \forall V \in T_{p}(\partial \Omega) \text { and } \forall p \in \partial \Omega
$$

Hint. You may use without proof the fact that affine maps preserve convexity.
5. Let Ω be a non-empty open subset of \mathbb{C} and let u be subharmonic on Ω. Let $\kappa: \mathbb{R} \longrightarrow \mathbb{R}$ be an increasing convex function. Define

$$
U(z):= \begin{cases}\kappa \circ u(z), & \text { if } z \notin u^{-1}\{-\infty\} \\ \lim _{x \rightarrow-\infty} \kappa(x), & \text { if } z \in u^{-1}\{-\infty\}\end{cases}
$$

Show that U is subharmonic
Hint. You need not establish that the limit stated above exists. Look through the literature for a suitable theorem that involves convex functions and finite measures, and state clearly any such theorem that you use.
6. Let X be an n-dimensional complex manifold and let $\mathfrak{A}=\left\{\left(U_{\alpha}, \psi_{\alpha}\right): \alpha \in A\right\}$ be the complex structure on X. Let $T X$ be the classical (i.e., real) tangent bundle of X obtained by viewing \mathfrak{A} as a \mathcal{C}^{∞}-smooth atlas. Recall that this means that-denoting by π the bundle-projection of $T X$ onto X - we have:

- for each $\alpha \in A$, homeomorphisms h_{α} such that the diagrams

commute (here proj_{1} denotes the projection onto the first factor); and
- smooth maps $g_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \longrightarrow G L(2 n, \mathbb{R})$, for all $\alpha, \beta \in A$ such that $U_{\alpha} \cap U_{\beta} \neq \varnothing$, that determine the transition functions for $T X$;
that are canonically determined by the collection $\left\{\psi_{\alpha}: \alpha \in A\right\}$. Write

$$
T^{\mathbb{C}} X:=\bigcup_{x \in X}\left(T_{x} X\right) \otimes \mathbb{C}
$$

Show, using \mathfrak{A}, that $T^{\mathbb{C}} X$ can be endowed with the structure of a smooth complex vector bundle whose fibres are $2 n$-dimensional complex vector spaces.
7. Let \mathcal{H}_{1} and \mathcal{H}_{2} be two separable Hilbert spaces and let $T: \mathcal{H}_{1} \longrightarrow \mathcal{H}_{2}$ be a densely-defined unbounded (linear) operator. Show that T is a closed operator if and only if $\operatorname{Dom}(T)$ is a Hilbert space when equipped with the graph norm.
8. Let $q \geq 1$. Recall that the formal adjoint of $\bar{\partial}: \mathbb{L}_{(0, q-1)}^{2}\left(\Omega ; \phi_{1}\right) \longrightarrow \mathbb{L}_{(0, q)}^{2}\left(\Omega ; \phi_{2}\right)$, (where $\bar{\partial}$ is defined in the sense of distributions) is the adjoint of $\bar{\partial}$ on smooth $(0, q)$-forms "paired against $\left(\mathcal{C}_{c}^{\infty}\right)^{0, q-1}(\Omega) . "$ Given $\alpha \in \mathscr{I}_{q-1}$ and $\beta \in \mathscr{I}_{q}$, define

$$
\varepsilon_{\alpha}^{j \beta}:=\left\{\begin{array}{lll}
0, & & \text { if } j \in \alpha \\
0, & & \text { if }\{j\} \cup \alpha \neq \beta, \\
\operatorname{sgn}\left(\begin{array}{cccc}
j & \alpha_{1} & \ldots & \alpha_{q-1} \\
\beta_{1} & \beta_{2} & \ldots & \beta_{q}
\end{array}\right), & \text { if }\{j\} \cup \alpha=\beta,
\end{array}\right.
$$

where $1 \leq j \leq n$. Denoting by $\bar{\delta}^{*}$ formal adjoint of $\bar{\partial}: \mathbb{L}_{(0, q-1)}^{2}\left(\Omega ; \phi_{1}\right) \longrightarrow \mathbb{L}_{(0, q)}^{2}\left(\Omega ; \phi_{2}\right)$, show that

$$
\bar{\delta}_{q-1}^{*}\left(\sum_{\beta \in \mathscr{I}_{q}} f_{\beta} d \bar{z}^{\beta}\right)=\sum_{\alpha \in \mathscr{I}_{q-1}}\left\{\sum_{\beta \in \mathscr{I}_{q}} \sum_{j=1}^{n} \varepsilon_{\alpha}^{j \beta} e^{\phi_{1}-\phi_{2}}\left(f_{\beta} \frac{\partial \phi_{2}}{\partial z_{j}}-\frac{\partial f_{\beta}}{\partial z_{j}}\right)\right\} d \bar{z}^{\alpha}
$$

where $\sum_{\beta \in \mathscr{I}_{q}} f_{\beta} d \bar{z}^{\beta} \in\left(\mathcal{C}^{\infty}\right)^{0, q}(\Omega)$.

