MA 328 : INTRODUCTION TO SEVERAL COMPLEX VARIABLES AUTUMN 2019 HOMEWORK 3

Instructor: GAUTAM BHARALI

DUE: Thursday, Nov. 21, 2019

Note:

- a) You are allowed to discuss these problems with your classmates, but individually-written and **original** write-ups are expected for submission. Please **acknowledge** any persons from whom you received help in solving these problems.
- b) Given a multi-index $\alpha \in \mathbb{N}^n$, we shall use the following notation:

$$\begin{aligned} |\alpha| &:= \alpha_1 + \dots + \alpha_n \\ \alpha! &:= \alpha_1! \dots \alpha_n! \,, \\ z^{\alpha} &:= z_1^{\alpha_1} \dots z_n^{\alpha_n} \,. \end{aligned}$$

c) The notation $I \in \mathscr{I}_q$ means that I is an increasing q-tuple in $\{1, \ldots, n\}^q$.

1. Let Ω be a non-empty open subset of \mathbb{R}^N , $N \geq 2$, and $u : \Omega \longrightarrow [-\infty, +\infty)$ be an uppersemicontinuous function. Show that u is subharmonic if and only if for each open Euclidean ball $B \Subset \Omega$, given any function h that is harmonic on an open ball B^* concentric to B such that $\overline{B} \subsetneq B^* \subseteq \Omega$ and satisfies $h|_{\partial B} \geq u|_{\partial B}$, we have

$$h(x) \ge u(x) \quad \forall x \in B.$$

Hint. Consider an appropriate topological consequence of upper-semicontinuity.

2. Let Ω be a non-empty open subset of \mathbb{C} . Let A be a non-empty set and suppose the family $\{u_{\alpha}\}_{\alpha \in A} \subset \mathsf{subh}(\Omega)$. Assume that for each $\alpha \in A$, $u_{\alpha} \not\equiv -\infty$ on each connected component of Ω . If the function

$$U(z) := \sup_{\alpha \in A} u_{\alpha}(z) \quad \forall z \in \Omega$$

is upper-semicontinuous, then show that $U \in \mathsf{subh}(\Omega)$.

Note. The condition on the behaviour of u_{α} on each of the connected components of Ω is not required.

3. Let Ω be a non-empty open subset of \mathbb{C}^n and let U be plurisubharmonic on Ω . Prove that for each $a \in \Omega$, $U(a) = \limsup_{z \to a} U(z)$.

4. This problem is meant to demonstrate an analytical characterization of convexity of smoothlybounded domains. To this end, consider a domain $\Omega \subsetneq \mathbb{R}^N$, $N \ge 2$, with \mathcal{C}^2 -smooth boundary, and provide details for the following outline. **Fix** a defining function ρ of class \mathcal{C}^2 . Let $p \in \partial \Omega$.

(a) Describe an explicit affine change of coordinate $\tau : \mathbb{R}^N \longrightarrow \mathbb{R}^N$ such that $\tau(p) = 0$ and, using the notation

	y_1		x_1	
	:	$:= \tau$	÷	,
	y_N		x_N	
$\ \nabla q(n)\ (0, 0, -1) \text{ and } D\tau(n) : T(\partial \Omega) \longrightarrow \{u\}$				

we have $D\tau(p)(\nabla \varrho(p)) = \|\nabla \varrho(p)\|(0,\ldots,0,-1)$ and $D\tau(p): T_p(\partial\Omega) \longrightarrow \{y \in \mathbb{R}^N : y_N = 0\}.$

(b) Re-express the equation of $\partial\Omega$ in (y_1, \ldots, y_N) -coordinates: i.e., show that there exists an open ball B centred at y = 0 and a function $\varphi : (B \cap \{y : y_N = 0\}) \longrightarrow \mathbb{R}$ such that

$$\partial(\tau(\Omega)) \cap B = \{ y \in B : y_N = \varphi(y_1, \dots, y_{N-1}) \}.$$

(c) From (a) and (b), deduce that Ω is convex if and only if

$$\sum_{j,k=1}^{N} \frac{\partial^2 \varrho}{\partial x_j \partial x_k}(p) V_j V_k \ge 0 \quad \forall V \in T_p(\partial \Omega) \text{ and } \forall p \in \partial \Omega.$$

Hint. You may use without proof the fact that affine maps preserve convexity.

5. Let Ω be a non-empty open subset of \mathbb{C} and let u be subharmonic on Ω . Let $\kappa : \mathbb{R} \longrightarrow \mathbb{R}$ be an increasing convex function. Define

$$U(z) := \begin{cases} \kappa \circ u(z), & \text{if } z \notin u^{-1}\{-\infty\}, \\ \lim_{x \to -\infty} \kappa(x), & \text{if } z \in u^{-1}\{-\infty\}. \end{cases}$$

Show that U is subharmonic

Hint. You **need not** establish that the limit stated above exists. Look through the literature for a suitable theorem that involves convex functions and finite measures, and **state clearly** any such theorem that you use.

6. Let X be an n-dimensional complex manifold and let $\mathfrak{A} = \{(U_{\alpha}, \psi_{\alpha}) : \alpha \in A\}$ be the complex structure on X. Let TX be the classical (i.e., real) tangent bundle of X obtained by viewing \mathfrak{A} as a \mathcal{C}^{∞} -smooth atlas. Recall that this means that — denoting by π the bundle-projection of TX onto X — we have:

• for each $\alpha \in A$, homeomorphisms h_{α} such that the diagrams

commute (here $proj_1$ denotes the projection onto the first factor); and

• smooth maps $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \longrightarrow GL(2n, \mathbb{R})$, for all $\alpha, \beta \in A$ such that $U_{\alpha} \cap U_{\beta} \neq \emptyset$, that determine the transition functions for TX;

that are canonically determined by the collection $\{\psi_{\alpha} : \alpha \in A\}$. Write

$$T^{\mathbb{C}}X := \bigcup_{x \in X} (T_x X) \otimes \mathbb{C}.$$

Show, using \mathfrak{A} , that $T^{\mathbb{C}}X$ can be endowed with the structure of a smooth complex vector bundle whose fibres are 2n-dimensional complex vector spaces.

7. Let \mathcal{H}_1 and \mathcal{H}_2 be two separable Hilbert spaces and let $T : \mathcal{H}_1 \longrightarrow \mathcal{H}_2$ be a densely-defined unbounded (linear) operator. Show that T is a closed operator if and only if $\mathsf{Dom}(T)$ is a Hilbert space when equipped with the graph norm. 8. Let $q \geq 1$. Recall that the formal adjoint of $\overline{\partial} : \mathbb{L}^2_{(0,q-1)}(\Omega;\phi_1) \longrightarrow \mathbb{L}^2_{(0,q)}(\Omega;\phi_2)$, (where $\overline{\partial}$ is defined in the sense of distributions) is the adjoint of $\overline{\partial}$ on smooth (0,q)-forms "paired against $(\mathcal{C}^{\infty}_{\mathsf{c}})^{0,q-1}(\Omega)$." Given $\alpha \in \mathscr{I}_{q-1}$ and $\beta \in \mathscr{I}_q$, define

$$\varepsilon_{\alpha}^{j\beta} := \begin{cases} 0, & \text{if } j \in \alpha, \\ 0, & \text{if } \{j\} \cup \alpha \neq \beta, \\\\ \text{sgn} \begin{pmatrix} j & \alpha_1 & \dots & \alpha_{q-1} \\ \beta_1 & \beta_2 & \dots & \beta_q \end{pmatrix}, & \text{if } \{j\} \cup \alpha = \beta, \end{cases}$$

where $1 \leq j \leq n$. Denoting by $\overline{\delta}^*$ formal adjoint of $\overline{\partial} : \mathbb{L}^2_{(0,q-1)}(\Omega;\phi_1) \longrightarrow \mathbb{L}^2_{(0,q)}(\Omega;\phi_2)$, show that

$$\overline{\delta}_{q-1}^* \left(\sum_{\beta \in \mathscr{I}_q} f_\beta d\overline{z}^\beta \right) = \sum_{\alpha \in \mathscr{I}_{q-1}} \left\{ \sum_{\beta \in \mathscr{I}_q} \sum_{j=1}^n \varepsilon_\alpha^{j\beta} e^{\phi_1 - \phi_2} \left(f_\beta \frac{\partial \phi_2}{\partial z_j} - \frac{\partial f_\beta}{\partial z_j} \right) \right\} d\overline{z}^\alpha,$$

where $\sum_{\beta \in \mathscr{I}_q} f_{\beta} d\overline{z}^{\beta} \in (\mathcal{C}^{\infty})^{0,q}(\Omega).$