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This note presents one of the implications in the big theorem characterizing domains of holomorphy.
In the ordering of the statements presented in class, we give the proof of the implication (4)⇒ (5).
In other words:

Theorem. Let Ω  Cn be a domain in Cn that admits a continuous plurisubharmonic exhaustion
function. Then Ω admits a C∞-smooth, strictly plurisubharmonic exhaustion function.

Remark. The starting point of the above result is that the given exhaustion admits a sequence of
smooth approximinants that are plurisubharmonic on an exhausting sequence of relatively-compact
open subsets of Ω. In some sense, these approximinants must be “glued together” without destroying
plurisubharmonicity. The proof of the above theorem, albeit slightly technical, presents one of the
strategies for gluing together plurisubharmonic functions — in a sense dictated by the application at
hand — so that plurisubharmonicity is preserved.

Proof. Let E ∈ C(Ω) ∩ psh(Ω) be the exhaustion function that is assumed to exist. Then,

Ẽ(z) := E(z) + ‖z‖2, z ∈ Ω,

is also a plurisubharmonic exhaustion function. Here, ‖ · ‖ is the Euclidean norm. For any α ∈ R,
write

Ωα := {z ∈ Ω : Ẽ(z) < α}.

By definition, Ωα b Ωβ whenever α < β, and Ωα b Ω ∀α ∈ R. By subtracting a large positive

constant from Ẽ if necessary, we can assume without loss of generality that Ω0 6= ∅. Also note that,
by definition, Ẽ is bounded from below. Set µ := infz∈Ω Ẽ(z).

We now define the sequence {εν}ν∈N ⊂ R+ by:

εν := dist[ Ων+1,Ω
C ], ν = 0, 1, 2, . . .

Let χ be any smooth polyradial cut-off with supp(χ) ⊂ Bn, where Bn is the open Euclidean unit
ball centered at 0 ∈ Cn. If we write χε := ε−2nχ(·/ε), ε > 0, then recall that the convolutions

Ẽε(z) := χε ∗ Ẽ(z), z ∈ Ω(ε) := {w ∈ Ω : dist(z,ΩC) > ε},

are well-defined and have the following properties (refer to any reasonable treatment of the Lebesgue
integral on Euclidean spaces):

a) Ẽε ∈ C∞(Ω(ε)) ∩ psh(Ω(ε)) for each ε > 0.

b) Ẽε ↓ Ẽ pointwise at each z ∈ Ω as ε→ 0+.

For each ν ∈ N, fix some neighbourhood Uν of Ων+1/2 such that Uν b Ων+1. Let Φν : Ω −→ R,
be any function satisfying the following two conditions:

• Φν(z) := Ẽεν (z) + ‖z‖2 for each z ∈ Uν ,

• Φν is a C∞-extension of
(
Ẽεν + ‖ · ‖2

)∣∣∣
Uν

to Ω.
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By construction and (a), we have

Φν |Uν ∈ spsh(Uν) for each ν ∈ N. (1)

Also, by (b), we have

Φν(z) > Ẽ(z) ∀z ∈ Uν and for each ν ∈ N. (2)

Let us now pick and fix a function κ : R −→ [0,∞) that is C∞-smooth and convex and has the
following properties:

• κ(x) = 0 for each x ≤ 0; and

• κ′(x), κ′′(x) > 0 for each x > 0.

Notice that, owing to (2), we have the following inequality:

Φν(z)− (ν − 1/2) > 0 ∀z ∈ (Uν \ Ων−1/2) and ∀ν ∈ Z+. (3)

We will now construct inductively a sequence of smooth functions on Ω using the above Φν ’s, each
of which is strictly plurisubharmonic on an increasing sequence of subsets of Ω, which converges in
a stronger sense than what (b) provides. To this end, it is easy to see that, owing to (3) and the
properties of the function κ, we can find a constant A1 > 0 that is so large that the function

Ψ1 := Φ0 +A1 κ◦(Φ1 − (1/2))

is strictly plurisubharmonic on (U1 \ Ω1/2) and such that Ψ1 > Ẽ on the latter set. However, from
these facts and by (1) and (2), we actually infer that Ψ1 is strictly plurisubharmonic on U1 and
strictly dominates Ẽ on U1.

Let us now make the following assumption:

(∗) We can find constants A1, . . . , Am > 0, m ∈ Z+, such that the function

Ψm := Φ0 +

m∑
j=1

Aj κ◦(Φj − (j − 1/2))

is strictly plurisubharmonic on Um and Ψm(z) > Ẽ(z) for every z ∈ Um.

By (∗) and by precisely the same argument as above, we can infer that the statement obtained by
replacing m by (m+ 1) in (∗) is true. Hence, by induction, (∗) is true for each m ∈ Z+.

Claim. The sequence {Ψν} converges uniformly on compact subsets of Ω.
To see this, let us fix a compact K ⊂ Ω. Let

• νK ∈ N be such that K ⊂ Ων+1/2 ∀ν ≥ νK .

• ν∗K ∈ Z+ be such that ⋃
z∈K

(z + εjBn) ⊂ Ων ∀ν ≥ ν∗K and ∀j ≥ νK .

(This is possible because εj > εj+1 ∀j ∈ N.)

• MK := supz∈K ‖z‖2.
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We can now estimate:

|Φj(z)| ≤
∣∣∣∣∫
Cn
Ẽ(z − εjw)χ(w) dV (w)

∣∣∣∣+MK

≤
∫
Bn
|Ẽ(z − εjw)| dV (w) +MK

≤ vol(Bn) max (ν∗K , |µ| ) +MK ∀z ∈ K and ∀j ≥ νK .

Observe that the last bound depends only on K. Thus, we can find an integer ν̃K ≥ νK such that

κ◦(Φj − (j − 1/2))(z) = 0 ∀z ∈ K and j ≥ ν̃K .

Thus, the sequence {Ψν} saturates on compacts. This certainly establishes the above claim. But
because it saturates, it establishes a fortiori the following:

Fact. Write Ψ := limν→∞ Ψν . Then, Ψ is C∞-smooth and strictly plurisubharmonic on Ω.

One can now complete the proof easily. It follows from the fact that (∗) is true for each m ∈ Z+

that Ψ ≥ Ẽ. Thus
{z ∈ Ω : Ψ(z) ≤ α} ⊆ Ωα  Ω ∀α ∈ R.

Since each Ωα is, by definition, compact, we conclude that Ψ is an exhaustion function. 2
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