MA 329 : TOPICS IN SEVERAL COMPLEX VARIABLES
 AUTUMN 2022
 HOMEWORK 2

Instructor: GAUTAM BHARALI
DUE: Friday, Oct. 28, 2022

Note:

a) You are allowed to discuss these problems with your classmates, but individually-written and original write-ups are expected for submission. Please acknowledge any persons from whom you received help in solving these problems.
b) Given a multi-index $\alpha \in \mathbb{N}^{n}$, we shall use the following notation:

$$
\begin{aligned}
|\alpha| & :=\alpha_{1}+\cdots+\alpha_{n} \quad \text { and } \quad \alpha!:=\alpha_{1}!\ldots \alpha_{n}! \\
z^{\alpha} & :=z_{1}^{\alpha_{1}} \ldots z_{n}^{\alpha_{n}}, \\
\frac{\partial^{|\alpha|}}{\partial z^{\alpha}} & :=\frac{\partial^{|\alpha|}}{\partial z_{1}^{\alpha_{1}} \ldots \partial z_{n}^{\alpha_{n}}} .
\end{aligned}
$$

c) If f is a function or a map on an open set $\Omega \subseteq \mathbb{C}^{n}$ and f is \mathbb{C}-differentiable at $z_{0} \in \Omega$, then we shall denote the complex total derivative of f at z_{0} as $D f\left(z_{0}\right)$.

1. Let $\Omega \subseteq \mathbb{C}^{n}$ be a domain and V an analytic subvariety of Ω. Show that if $V \varsubsetneqq \Omega$, then $\Omega \backslash V$ is dense in Ω.
2. Let $\Omega \subseteq \mathbb{C}^{n}$ be a domain and let $\varphi_{1}, \ldots \varphi_{m} \in \mathcal{O}(\Omega)$. Suppose $\sum_{j=1}^{m}\left|\varphi_{j}\right|^{2}$ is a constant function. Show that each $\varphi_{j}, j=1, \ldots, m$, is constant.
3. Complete the following outline to prove that if $\Omega \subseteq_{\text {open }} \mathbb{C}^{n}$, then any compact analytic subvariety of Ω is a finite set.
(a) Prove the above result for the case $n=1$.
(b) Assuming that the above result is true for $n=m-1$ for some $m \in \mathbb{Z}_{+} \backslash\{1\}$, prove the corresponding result for $n=m$ by using the following theorem:
Projection Theorem. Let $D \subseteq_{\text {open }} \mathbb{C}^{m}$, $m \geq 2$, and let V be an analytic subvariety of D. Let $p \in V$. Write

$$
\mathscr{L}:=\left\{\pi_{m-1}(p)\right\} \times \mathbb{C},
$$

where π_{m-1} denotes the projection onto the first $(m-1)$ coordinates. If p is an isolated point of $V \cap \mathscr{L}$, then there exists an m-dimensional polydisc Δ with centre p such that $\Delta \subset D$ and such that $\pi_{m-1}(V \cap \Delta)$ is an analytic subvariety of $\pi_{m-1}(\Delta)$.
You may freely use the above theorem without proving it.
4. Following the idea of the proof of the Remmert-Stein Theorem B for the $n=2$ case, and stating and proving whatever else is required, prove the Remmert-Stein Theorem B in its full generality.
5. Let $f: \mathbb{D} \rightarrow \mathbb{D}$ be proper and holomorphic. Show that there exist points $a_{1}, \ldots, a_{m} \in \mathbb{D}$, positive integers n_{1}, \ldots, n_{m}, and a constant $\theta \in \mathbb{R}$ such that

$$
f(z)=e^{i \theta} \prod_{j=1}^{m}\left(\frac{z-a_{j}}{1-\bar{a}_{j} z}\right)^{n_{j}}, \quad z \in \mathbb{D}
$$

6. Show that

$$
\mathcal{M}_{\mathbb{D}}(a, b):=\left|\frac{a-b}{1-\bar{a} b}\right| \quad \forall a, b \in \mathbb{D}
$$

is a metric on \mathbb{D}.
6. Let p denote the Poincaré distance on \mathbb{D}. Show that if $b \in(0,1)$, then the p -segment $[0, b]_{\mathrm{p}}=$ $[0, b]$.
7. Let $D \subseteq \mathbb{C}^{n}$ be a domain, let V be an analytic subvariety of D such that $V \nsubseteq D$. Let $\Omega:=D \backslash V$. Find a relation between $c_{D}(a, b)$ and $c_{\Omega}(a, b)$ for all $a, b \in \Omega$. Here, c_{\star} denotes the Carathéodory distance.
8. Let Ω denote a domain in \mathbb{C}^{n} and assume that it is Carathéodory hyperbolic. Is the metric space $\left(\Omega, c_{\Omega}\right)$ necessarily Cauchy-complete? Please justify your answer.

