MA 329 : TOPICS IN SEVERAL COMPLEX VARIABLES AUTUMN 2022 HOMEWORK 2

Instructor: GAUTAM BHARALI

DUE: Friday, Oct. 28, 2022

Note:

- a) You are allowed to discuss these problems with your classmates, but individually-written and **original** write-ups are expected for submission. Please **acknowledge** any persons from whom you received help in solving these problems.
- b) Given a multi-index $\alpha \in \mathbb{N}^n$, we shall use the following notation:

$$\begin{aligned} |\alpha| &:= \alpha_1 + \dots + \alpha_n \quad \text{and} \quad \alpha! := \alpha_1! \dots \alpha_n!, \\ z^{\alpha} &:= z_1^{\alpha_1} \dots z_n^{\alpha_n}, \\ \frac{\partial^{|\alpha|}}{\partial z^{\alpha}} &:= \frac{\partial^{|\alpha|}}{\partial z_1^{\alpha_1} \dots \partial z_n^{\alpha_n}}. \end{aligned}$$

c) If f is a function or a map on an open set $\Omega \subseteq \mathbb{C}^n$ and f is \mathbb{C} -differentiable at $z_0 \in \Omega$, then we shall denote the complex total derivative of f at z_0 as $Df(z_0)$.

1. Let $\Omega \subseteq \mathbb{C}^n$ be a domain and V an analytic subvariety of Ω . Show that if $V \subsetneq \Omega$, then $\Omega \setminus V$ is dense in Ω .

2. Let $\Omega \subseteq \mathbb{C}^n$ be a domain and let $\varphi_1, \ldots, \varphi_m \in \mathcal{O}(\Omega)$. Suppose $\sum_{j=1}^m |\varphi_j|^2$ is a constant function. Show that each $\varphi_j, j = 1, \ldots, m$, is constant.

3. Complete the following outline to prove that if $\Omega \subseteq_{\text{open}} \mathbb{C}^n$, then any compact analytic subvariety of Ω is a finite set.

- (a) Prove the above result for the case n = 1.
- (b) Assuming that the above result is true for n = m 1 for some $m \in \mathbb{Z}_+ \setminus \{1\}$, prove the corresponding result for n = m by using the following theorem:

PROJECTION THEOREM. Let $D \subseteq_{\text{open}} \mathbb{C}^m$, $m \ge 2$, and let V be an analytic subvariety of D. Let $p \in V$. Write

$$\mathscr{U} := \{\pi_{m-1}(p)\} \times \mathbb{C},\$$

where π_{m-1} denotes the projection onto the first (m-1) coordinates. If p is an isolated point of $V \cap \mathscr{L}$, then there exists an m-dimensional polydisc Δ with centre p such that $\Delta \subset D$ and such that $\pi_{m-1}(V \cap \Delta)$ is an analytic subvariety of $\pi_{m-1}(\Delta)$.

You may freely use the above theorem without proving it.

4. Following the idea of the proof of the Remmert–Stein Theorem B for the n = 2 case, and stating and proving whatever else is required, prove the Remmert–Stein Theorem B in its full generality.

5. Let $f : \mathbb{D} \to \mathbb{D}$ be proper and holomorphic. Show that there exist points $a_1, \ldots, a_m \in \mathbb{D}$, positive integers n_1, \ldots, n_m , and a constant $\theta \in \mathbb{R}$ such that

$$f(z) = e^{i\theta} \prod_{j=1}^{m} \left(\frac{z-a_j}{1-\overline{a}_j z}\right)^{n_j}, \ z \in \mathbb{D}.$$

6. Show that

$$\mathcal{M}_{\mathbb{D}}(a,b) := \left| \frac{a-b}{1-\overline{a}b} \right| \quad \forall a,b \in \mathbb{D}$$

is a metric on \mathbb{D} .

6. Let **p** denote the Poincaré distance on \mathbb{D} . Show that if $b \in (0, 1)$, then the **p**-segment $[0, b]_{\mathbf{p}} = [0, b]$.

7. Let $D \subseteq \mathbb{C}^n$ be a domain, let V be an analytic subvariety of D such that $V \subsetneq D$. Let $\Omega := D \setminus V$. Find a relation between $c_D(a, b)$ and $c_{\Omega}(a, b)$ for all $a, b \in \Omega$. Here, c_{\star} denotes the Carathéodory distance.

8. Let Ω denote a domain in \mathbb{C}^n and assume that it is Carathéodory hyperbolic. Is the metric space (Ω, c_{Ω}) necessarily Cauchy-complete? Please **justify** your answer.