

MATH 380 : INTRODUCTION TO COMPLEX DYNAMICS
AUTUMN 2016
HOMEWORK 2

Instructor: GAUTAM BHARALI

DUE: Friday, Sep. 23, 2016

Remarks and instructions :

- You are allowed to discuss these problems with your fellow-students, but individually-written and **original** write-ups are expected for submission.

b) We shall use the following notation:

$$\begin{aligned}\mathbb{D} &:= \text{the open unit disc with centre } 0 \in \mathbb{C}, \\ \widehat{\mathbb{C}} &:= \text{the one-point compactification of } \mathbb{C}.\end{aligned}$$

1. Show that

$$h_{\mathbb{D}}(z_1, z_2) := \left| \frac{z_1 - z_2}{1 - \bar{z}_2 z_1} \right| \quad \forall z_1, z_2 \in \mathbb{D}$$

is a metric on \mathbb{D} .

2. Let X be a hyperbolic Riemann surface, and let Δ_X denote the Poincaré distance on X . Show that the topology induced by Δ_X is the same as the manifold topology on X .

3. Show that there is no non-constant holomorphic map from $\widehat{\mathbb{C}}$ or from \mathbb{T}^2 (regardless of the complex structure on it) into any hyperbolic Riemann surface.

4. Show that any holomorphic map $f : \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ must be a rational map.

5. Let $f : \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ be a holomorphic map and let z_0 be a fixed point of f . Let $\lambda_f(z_0)$ denote the multiplier of f . Let ψ be any Möbius transformation such that $\psi(z_0) \neq \infty$. Show that:

- $\psi \circ f \circ \psi^{-1}$ is holomorphic in the classical sense in a small planar neighbourhood of $\psi(z_0)$.
- $\lambda_f(z_0) = (\psi \circ f \circ \psi^{-1})'(\psi(z_0))$.

6. Let $f : \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ be a non-constant holomorphic map. Suppose f has a repelling periodic orbit $(z_0, z_1, \dots, z_{p-1})$. Show that each z_j lies in the Julia set of f , $j = 0, 1, \dots, p-1$.