

MATH 380 : INTRODUCTION TO COMPLEX DYNAMICS
AUTUMN 2016
HOMEWORK 3

Instructor: GAUTAM BHARALI

DUE: Monday, Oct. 24, 2016

Remarks and instructions :

- You are allowed to discuss these problems with your fellow-students, but individually-written and **original** write-ups are expected for submission.

b) We shall use the following notation:

$$\begin{aligned}\mathbb{D} &:= \text{the open unit disc with centre } 0 \in \mathbb{C}, \\ \widehat{\mathbb{C}} &:= \text{the one-point compactification of } \mathbb{C}.\end{aligned}$$

1. Let $f : \widehat{\mathbb{C}} \longrightarrow \widehat{\mathbb{C}}$ be a holomorphic map and assume that $\deg(f) \geq 2$. Let $x_0 \in \widehat{\mathbb{C}}$ have finite grand orbit under f . Using the following result (the local version of which you have studied as the “counting zeros theorem”):

For a point $w \in \widehat{\mathbb{C}}$, $\text{Card}[f^{-1}(w)] < \deg(f)$ if and only if at least one $z \in f^{-1}\{w\}$ is a critical point of f .

show that each point in $GO_f(x_0)$ is a critical point of f .

Hint. Recall that, if $p \in GO_f(x_0)$, then p belongs to a periodic orbit. You may also use without proof, if required, the fact that $\deg(f^n) = \deg(f)^n$.

2. Let $f : \widehat{\mathbb{C}} \longrightarrow \widehat{\mathbb{C}}$ be a holomorphic map with $\deg(f) \geq 2$. Show that the Julia set of f is a perfect set.

3. Let $f : \widehat{\mathbb{C}} \longrightarrow \widehat{\mathbb{C}}$ be a holomorphic map and let z_0 be an attracting fixed point of f . Let $\mathcal{B}_f(z_0)$ denote the basin of attraction of z_0 . Show that, for each $p \in \mathcal{B}_f(z_0)$, $GO_f(p) \subset \mathcal{B}_f(z_0)$. Now suppose $GO_f(p)$ is not finite: then, is $GO_f(p)$ discrete in $\mathcal{B}_f(z_0)$?

4. Let $f : \widehat{\mathbb{C}} \longrightarrow \widehat{\mathbb{C}}$ be a holomorphic map and assume that, in a neighbourhood of 0,

$$f(z) = z + a_{p+1}z^{p+1} + O(|z|^{p+2}),$$

where $p \geq 1$ and $a_{p+1} \neq 0$. Let $\{\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_{2p-1}\}$ be a cyclic ordering, along the circle $\{w \in \mathbb{C} : |w| = 1/|a_{p+1}|^{1/p}\}$, of the attracting and repelling directions of f associated to the fixed point 0, with \mathbf{v}_0 denoting a repelling direction. Show that there exist constants $r_0, \theta_0 > 0$, sufficiently small, such that

$$|f(z)| \begin{cases} > |z| & \text{on the sector } S_j, \text{ if } j \text{ is even,} \\ < |z| & \text{on the sector } S_j, \text{ if } j \text{ is odd,} \end{cases}$$

where the sectors S_0, \dots, S_{2p-1} are defined as:

$$S_j := \{z \in \mathbb{C} : 0 < |z| < r_0, |\operatorname{Arg}(z/\mathbf{v}_j)| < \theta_0\}.$$

Here, Arg denotes the principal branch of the argument.