MATH 380: INTRODUCTION TO COMPLEX DYNAMICS AUTUMN 2016 HOMEWORK 3

Instructor: GAUTAM BHARALI

DUE: Monday, Oct. 24, 2016

Remarks and instructions :

- You are allowed to discuss these problems with your fellow-students, but individually-written and **original** write-ups are expected for submission.
- b) We shall use the following notation:

 \mathbb{D} := the open unit disc with centre $0 \in \mathbb{C}$,

 $\widehat{\mathbb{C}}$:= the one-point compactification of \mathbb{C} .

1. Let $f : \widehat{\mathbb{C}} \longrightarrow \widehat{\mathbb{C}}$ be a holomorphic map and assume that $\deg(f) \ge 2$. Let $x_0 \in \widehat{\mathbb{C}}$ have finite grand orbit under f. Using the following result (the local version of which you have studied as the "counting zeros theorem"):

For a point $w \in \widehat{\mathbb{C}}$, $Card[f^{-1}(w)] < deg(f)$ if and only if at least one $z \in f^{-1}\{w\}$ is a critical point of f.

show that each point in $GO_f(x_0)$ is a critical point of f.

Hint. Recall that, if $p \in GO_f(x_0)$, then p belongs to a periodic orbit. You may also use without proof, if required, the fact that $\deg(f^n) = \deg(f)^n$.

2. Let $f: \widehat{\mathbb{C}} \longrightarrow \widehat{\mathbb{C}}$ be a holomorphic map with $\deg(f) \ge 2$. Show that the Julia set of f is a perfect set.

3. Let $f: \widehat{\mathbb{C}} \longrightarrow \widehat{\mathbb{C}}$ be a holomorphic map and let z_0 be an attracting fixed point of f. Let $\mathscr{B}_f(z_0)$ denote the basin of attraction of z_0 . Show that, for each $p \in \mathscr{B}_f(z_0)$, $GO_f(p) \subset \mathscr{B}_f(z_0)$. Now suppose $GO_f(p)$ is not finite: then, is $GO_f(p)$ discrete in $\mathscr{B}_f(z_0)$?

4. Let $f: \widehat{\mathbb{C}} \longrightarrow \widehat{\mathbb{C}}$ be a holomorphic map and assume that, in a neighbourhood of 0,

$$f(z) = z + a_{p+1}z^{p+1} + O(|z|^{p+2}),$$

where $p \geq 1$ and $a_{p+1} \neq 0$. Let $\{v_0, v_1, \ldots, v_{2p-1}\}$ be a cyclic ordering, along the circle $\{w \in \mathbb{C} : |w| = 1/|a_{p+1}|^{1/p}\}$, of the attracting and repelling directions of f associated to the fixed point 0, with v_0 denoting a repelling direction. Show that there exist constants $r_0, \theta_0 > 0$, sufficiently small, such that

$$|f(z)| \begin{cases} > |z| & \text{on the sector } S_j, \text{ if } j \text{ is even,} \\ < |z| & \text{on the sector } S_j, \text{ if } j \text{ is odd,} \end{cases}$$

where the sectors S_0, \ldots, S_{2p-1} are defined as:

$$S_j := \{ z \in \mathbb{C} : 0 < |z| < r_0, \ |\mathsf{Arg}(z/v_j)| < heta_0 \}.$$

Here, Arg denotes the principal branch of the argument.