MATH 380: INTRODUCTION TO COMPLEX DYNAMICS AUTUMN 2016 HOMEWORK 4

Instructor: GAUTAM BHARALI

DUE: Friday, Nov. 25, 2016

Remarks and instructions :

- You are allowed to discuss these problems with your fellow-students, but individually-written and **original** write-ups are expected for submission.
- b) We shall use the following notation:

 $\widehat{\mathbb{C}} := \text{ the one-point compactification of } \mathbb{C}.$ $\dim_H(S) := \text{ the Hausdorff dimension of } S \subseteq \mathbb{R}^n \text{ (fixing some } n \in \mathbb{Z}_+\text{)}.$

1. Let $f : \widehat{\mathbb{C}} \longrightarrow \widehat{\mathbb{C}}$ be a non-constant holomorphic map and let z_0 be repelling fixed point. Formulate and prove, in this case, an analogue of the **global** Koenig semi-conjugacy theorem that was proved in class.

Hint. Recall that there is a neighbourhood $U \ni z_0$ such that $f|_U$ is invertible.

2. Fix $n \in \mathbb{Z}_+$. Show that for any set $S \subseteq \mathbb{R}^n$, the α^{th} Hausdorff outer measure $H_{\alpha}(S) = 0$ for every $\alpha > n$.

Note. You can use without proof any statement about H_{α} presented prior to the above in class.

3. Fix $n \in \mathbb{Z}_+$. Show that for any non-empty open set $U \subseteq \mathbb{R}^n$, $\dim_H(U) = n$.

4. Let $f : \widehat{\mathbb{C}} \longrightarrow \widehat{\mathbb{C}}$ be a non-constant holomorphic map and let $\deg(f) \ge 2$. Given any $\varphi \in \mathcal{C}(\widehat{\mathbb{C}}; \mathbb{C})$, define

$$T_f[\varphi](w) := \sum_{w \in f^{-1}\{w\}^{\bullet}} \varphi(z),$$

where the notation $f^{-1}\{w\}^{\bullet}$ denotes the **list** of roots of the equation f(z) = w repeated according to multiplicity. Show that $Tf[\varphi]$ is continuous on $\widehat{\mathbb{C}}$.

Hint. Do you see a covering space somewhere in this set-up?