MATH 380:INTRODUCTION TO COMPLEX DYNAMICS
 AUTUMN 2016
 HOMEWORK 4

Remarks and instructions :

- You are allowed to discuss these problems with your fellow-students, but individually-written and original write-ups are expected for submission.
b) We shall use the following notation:

$$
\begin{aligned}
\widehat{\mathbb{C}} & :=\text { the one-point compactification of } \mathbb{C} . \\
\operatorname{dim}_{H}(S) & \left.:=\text { the Hausdorff dimension of } S \subseteq \mathbb{R}^{n} \text { (fixing some } n \in \mathbb{Z}_{+}\right) .
\end{aligned}
$$

1. Let $f: \widehat{\mathbb{C}} \longrightarrow \widehat{\mathbb{C}}$ be a non-constant holomorphic map and let z_{0} be repelling fixed point. Formulate and prove, in this case, an analogue of the global Koenig semi-conjugacy theorem that was proved in class.
Hint. Recall that there is a neighbourhood $U \ni z_{0}$ such that $\left.f\right|_{U}$ is invertible.
2. Fix $n \in \mathbb{Z}_{+}$. Show that for any set $S \subseteq \mathbb{R}^{n}$, the $\alpha^{\text {th }}$ Hausdorff outer measure $H_{\alpha}(S)=0$ for every $\alpha>n$.
Note. You can use without proof any statement about H_{α} presented prior to the above in class.
3. Fix $n \in \mathbb{Z}_{+}$. Show that for any non-empty open set $U \subseteq \mathbb{R}^{n}$, $\operatorname{dim}_{H}(U)=n$.
4. Let $f: \widehat{\mathbb{C}} \longrightarrow \widehat{\mathbb{C}}$ be a non-constant holomorphic map and let $\operatorname{deg}(f) \geq 2$. Given any $\varphi \in \mathcal{C}(\widehat{\mathbb{C}} ; \mathbb{C})$, define

$$
T_{f}[\varphi](w):=\sum_{w \in f^{-1}\{w\}} \varphi(z),
$$

where the notation $f^{-1}\{w\}$ denotes the list of roots of the equation $f(z)=w$ repeated according to multiplicity. Show that $T f[\varphi]$ is continuous on $\widehat{\mathbb{C}}$.
Hint. Do you see a covering space somewhere in this set-up?

