MATH 380: INTRODUCTION TO COMPLEX DYNAMICS SPRING 2021 HOMEWORK 1

Instructor: GAUTAM BHARALI

DUE: Friday, March 25, 2021

Remarks and instructions :

- a) You are allowed to discuss these problems with your fellow-students, but individually-written and **original** write-ups are expected for submission.
- b) Please **acknowledge** any persons from whom you received help in solving these problems—stating the problem(s) in which you took their help.

1. Let X be a Hausdorff, 2-dimensional, locally Euclidean space. Suppose $\mathscr{A} := \{(U_{\alpha}, \phi_{\alpha}) : \alpha \in J\}$ and $\mathscr{A}' := \{(V_{\beta}, \psi_{\beta}) : \beta \in J'\}$ be two holomorphic atlases on X. Show that $\mathscr{A} \sim \mathscr{A}'$ if and only if id_X is a biholomorphic map $\operatorname{id}_X : (X, \mathscr{A}) \to (X, \mathscr{A})$ between Riemann surfaces (to clarify: this means that we use the atlases \mathscr{A} and \mathscr{A}' to encode the holomorphicity of the latter map, taking \mathscr{A} as the atlas on the domain and \mathscr{A}' as the atlas on the range).

2. Let X be a Hausdorff, 2-dimensional, locally Euclidean space. Suppose $\mathscr{A} := \{(U_{\alpha}, \phi_{\alpha}) : \alpha \in J\}$ is a holomorphic atlas on X. Let $f : X \to \mathbb{C}$ be a holomorphic function. Show that the chart-wise conditions for holomorphicity of f remain true with

$$(\psi_{\beta}, V_{\beta})$$
 replacing $(\phi_{\alpha}, U_{\alpha})$

in the latter conditions if $\mathscr{A}' := \{(V_{\beta}, \psi_{\beta}) : \beta \in J'\}$ is another holomorphic atlas on X with $\mathscr{A} \sim \mathscr{A}'$.

3. Let X and Y be Riemann surfaces and let $f : X \to Y$ be a holomorphic. Formulate a statement of the Open Mapping Theorem in this setting and prove it.

4. Let X and Y be compact, connected Riemann surfaces, and let $f : X \to Y$ be a holomorphic map. Show that if f is non-constant, then it must be surjective.

5. The 1-dimensional complex projective space, denoted by \mathbb{P}^1 is defined as

$$\mathbb{C}^2 \setminus \{(0,0)\} / \sim,$$

where $(x_0, x_1) \sim (y_0, y_1) \iff (y_0, y_1) = \lambda(x_0, x_1)$ for some $\lambda \in \mathbb{C} \setminus \{0\}$.

equipped with the quotient topology. Let $[x_0 : x_1]$ denote the equivalence class of (x_0, x_1) and let $U_j := \{[x_0 : x_1] \in \mathbb{P}^1 : x_j \neq 0\}, j = 0, 1.$

- a) Write $\phi_0: U_0 \ni [x_0:x_1] \longmapsto x_1/x_0$. Show that the expression for ϕ_0 does not depend on the choice of representative of $[x_0:x_1]$, and that ϕ_0 is a homeomorphism.
- b) With Part (a) as a guide, construct a holomorphic atlas $\mathscr{A} := \{(U_0, \phi_0), (U_1, \phi_1)\}$ on \mathbb{P}^1 .

c) Prove that the Riemann surfaces $(\mathbb{P}^1, \mathscr{A})$ and $\widehat{\mathbb{C}}$ are biholomorphic.

6. Let ω_1 and ω_2 be two non-zero complex numbers that are \mathbb{R} -independent when viewed as vectors in \mathbb{R}^2 . Let us view the (real) 2-dimensional torus \mathbb{T}^2 as $\mathbb{T}^2 = S^1 \times S^1$ (equipped with the relative topology that it inherits from $\mathbb{C} \times \mathbb{C}$). Let us write

$$U_{00} := \{ (e^{i\theta_1}, e^{i\theta_2}) \in \mathbb{T}^2 : 0 < \theta_1, \theta_2 < 2\pi \}$$

$$\phi_{00} : U_{00} \ni (e^{i\theta_1}, e^{i\theta_2}) \longmapsto \frac{\theta_1}{2\pi} \omega_1 + \frac{\theta_2}{2\pi} \omega_2.$$

You may **assume without proof** that U_{00} is open in \mathbb{T}^2 and that ϕ_{00} is a homeomorphism onto its image in \mathbb{C} . Emulating the above idea, and the fact that the same point in $\mathbb{T}^2 \hookrightarrow \mathbb{C}^2$ can be represented by

$$(e^{i(\theta_1+2\pi\mu)}, e^{i(\theta_2+2\pi\nu)})$$
 for some $\theta_1, \theta_2 \in [0, 2\pi)$ and $\forall (\mu, \nu) \in \mathbb{Z}^2$,

construct **four** charts (one of which is given above)

$$(U_{jk}, \phi_{jk}), \quad \phi_{jk} : U_{jk} \to \mathbb{C}, \quad j = 0, 1, \ k = 0, 1,$$

that cover \mathbb{T}^2 such that

$$\mathscr{A} := \{ (U_{ij}, \phi_{jk}) : j = 0, 1, \ k = 0, 1 \}$$

is a **holomorphic** atlas on \mathbb{T}^2 .

7. Show that

 $\operatorname{Hol}(\widehat{\mathbb{C}};\widehat{\mathbb{C}}) \,=\, \{\widehat{f}:\widehat{\mathbb{C}}\to \widehat{\mathbb{C}}\mid f \text{ is a rational function}\},$

where \hat{f} is the map associated with f as described in class.

Hint. If $F \in \operatorname{Hol}(\widehat{\mathbb{C}}; \widehat{\mathbb{C}})$, then consider the meromorphic function $F|_{\mathbb{C}}$ and explore what singularities the latter can or cannot have at ∞ .

8. Let $p: Y \to X$ be a covering space, where X is a Riemann surface. Fix a holomorphic atlas $\mathscr{A} := \{(U_{\alpha}, \phi_{\alpha}) : \alpha \in J\}$ on X. For each $x \in X$, fix an evenly covered neighbourhood V_x of x and write $\mathscr{I} := \{(\alpha, x) \in J \times X : U_{\alpha} \cap V_x \neq \emptyset\}$. Show that

$$\mathscr{B} := \bigcup_{x \in X} \bigcup_{y \in p^{-1}\{x\}} \left\{ \left(p^{-1} (U_{\alpha} \cap V_x) \right)^y, \phi_{\alpha} \circ \left(p|_{p^{-1} (U_{\alpha} \cap V_x)|^y} \right) \right\} : (x, \alpha) \in \mathscr{I} \right\}$$

is a holomorphic atlas on Y, where we define

 $p^{-1}(U_{\alpha} \cap V_x)|^y :=$ the connected component of $p^{-1}(U_{\alpha} \cap V_x)$ containing y.