MATH 380:INTRODUCTION TO COMPLEX DYNAMICS SPRING 2021
 HOMEWORK 1

Remarks and instructions :

a) You are allowed to discuss these problems with your fellow-students, but individually-written and original write-ups are expected for submission.
b) Please acknowledge any persons from whom you received help in solving these problems - stating the problem(s) in which you took their help.

1. Let X be a Hausdorff, 2-dimensional, locally Euclidean space. Suppose $\mathscr{A}:=\left\{\left(U_{\alpha}, \phi_{\alpha}\right): \alpha \in J\right\}$ and $\mathscr{A}^{\prime}:=\left\{\left(V_{\beta}, \psi_{\beta}\right): \beta \in J^{\prime}\right\}$ be two holomorphic atlases on X. Show that $\mathscr{A} \sim \mathscr{A}^{\prime}$ if and only if id X is a biholomorphic map id $_{X}:(X, \mathscr{A}) \rightarrow(X, \mathscr{A})$ between Riemann surfaces (to clarify: this means that we use the atlases \mathscr{A} and \mathscr{A}^{\prime} to encode the holomorphicity of the latter map, taking \mathscr{A} as the atlas on the domain and \mathscr{A}^{\prime} as the atlas on the range).
2. Let X be a Hausdorff, 2-dimensional, locally Euclidean space. Suppose $\mathscr{A}:=\left\{\left(U_{\alpha}, \phi_{\alpha}\right): \alpha \in J\right\}$ is a holomorphic atlas on X. Let $f: X \rightarrow \mathbb{C}$ be a holomorphic function. Show that the chart-wise conditions for holomorphicity of f remain true with

$$
\left(\psi_{\beta}, V_{\beta}\right) \text { replacing }\left(\phi_{\alpha}, U_{\alpha}\right)
$$

in the latter conditions if $\mathscr{A}^{\prime}:=\left\{\left(V_{\beta}, \psi_{\beta}\right): \beta \in J^{\prime}\right\}$ is another holomorphic atlas on X with $\mathscr{A} \sim \mathscr{A}^{\prime}$.
3. Let X and Y be Riemann surfaces and let $f: X \rightarrow Y$ be a holomorphic. Formulate a statement of the Open Mapping Theorem in this setting and prove it.
4. Let X and Y be compact, connected Riemann surfaces, and let $f: X \rightarrow Y$ be a holomorphic map. Show that if f is non-constant, then it must be surjective.
5. The 1-dimensional complex projective space, denoted by \mathbb{P}^{1} is defined as

$$
\begin{aligned}
& \quad \mathbb{C}^{2} \backslash\{(0,0)\} / \sim \\
& \text { where }\left(x_{0}, x_{1}\right) \sim\left(y_{0}, y_{1}\right) \Longleftrightarrow\left(y_{0}, y_{1}\right)=\lambda\left(x_{0}, x_{1}\right) \text { for some } \lambda \in \mathbb{C} \backslash\{0\}
\end{aligned}
$$

equipped with the quotient topology. Let $\left[x_{0}: x_{1}\right]$ denote the equivalence class of $\left(x_{0}, x_{1}\right)$ and let $U_{j}:=\left\{\left[x_{0}: x_{1}\right] \in \mathbb{P}^{1}: x_{j} \neq 0\right\}, j=0,1$.
a) Write $\phi_{0}: U_{0} \ni\left[x_{0}: x_{1}\right] \longmapsto x_{1} / x_{0}$. Show that the expression for ϕ_{0} does not depend on the choice of representative of $\left[x_{0}: x_{1}\right]$, and that ϕ_{0} is a homeomorphism.
b) With Part (a) as a guide, construct a holomorphic atlas $\mathscr{A}:=\left\{\left(U_{0}, \phi_{0}\right),\left(U_{1}, \phi_{1}\right)\right\}$ on \mathbb{P}^{1}.
c) Prove that the Riemann surfaces $\left(\mathbb{P}^{1}, \mathscr{A}\right)$ and $\widehat{\mathbb{C}}$ are biholomorphic.
6. Let ω_{1} and ω_{2} be two non-zero complex numbers that are \mathbb{R}-independent when viewed as vectors in \mathbb{R}^{2}. Let us view the (real) 2-dimensional torus \mathbb{T}^{2} as $\mathbb{T}^{2}=S^{1} \times S^{1}$ (equipped with the relative topology that it inherits from $\mathbb{C} \times \mathbb{C}$). Let us write

$$
\begin{aligned}
U_{00} & :=\left\{\left(e^{i \theta_{1}}, e^{i \theta_{2}}\right) \in \mathbb{T}^{2}: 0<\theta_{1}, \theta_{2}<2 \pi\right\} \\
\phi_{00} & : U_{00} \ni\left(e^{i \theta_{1}}, e^{i \theta_{2}}\right) \longmapsto \frac{\theta_{1}}{2 \pi} \omega_{1}+\frac{\theta_{2}}{2 \pi} \omega_{2}
\end{aligned}
$$

You may assume without proof that U_{00} is open in \mathbb{T}^{2} and that ϕ_{00} is a homeomorphism onto its image in \mathbb{C}. Emulating the above idea, and the fact that the same point in $\mathbb{T}^{2} \hookrightarrow \mathbb{C}^{2}$ can be represented by

$$
\left(e^{i\left(\theta_{1}+2 \pi \mu\right)}, e^{i\left(\theta_{2}+2 \pi \nu\right)}\right) \text { for some } \theta_{1}, \theta_{2} \in[0,2 \pi) \text { and } \forall(\mu, \nu) \in \mathbb{Z}^{2}
$$

construct four charts (one of which is given above)

$$
\left(U_{j k}, \phi_{j k}\right), \quad \phi_{j k}: U_{j k} \rightarrow \mathbb{C}, \quad j=0,1, k=0,1
$$

that cover \mathbb{T}^{2} such that

$$
\mathscr{A}:=\left\{\left(U_{i j}, \phi_{j k}\right): j=0,1, k=0,1\right\}
$$

is a holomorphic atlas on \mathbb{T}^{2}.
7. Show that

$$
\operatorname{Hol}(\widehat{\mathbb{C}} ; \widehat{\mathbb{C}})=\{\widehat{f}: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}} \mid f \text { is a rational function }\}
$$

where \widehat{f} is the map associated with f as described in class.
Hint. If $F \in \operatorname{Hol}(\widehat{\mathbb{C}} ; \widehat{\mathbb{C}})$, then consider the meromorphic function $\left.F\right|_{\mathbb{C}}$ and explore what singularities the latter can or cannot have at ∞.
8. Let $p: Y \rightarrow X$ be a covering space, where X is a Riemann surface. Fix a holomorphic atlas $\mathscr{A}:=\left\{\left(U_{\alpha}, \phi_{\alpha}\right): \alpha \in J\right\}$ on X. For each $x \in X$, fix an evenly covered neighbourhood V_{x} of x and write $\mathscr{I}:=\left\{(\alpha, x) \in J \times X: U_{\alpha} \cap V_{x} \neq \varnothing\right\}$. Show that

$$
\mathscr{B}:=\bigcup_{x \in X} \bigcup_{y \in p^{-1}\{x\}}\left\{\left(\left.p^{-1}\left(U_{\alpha} \cap V_{x}\right)\right|^{y}, \phi_{\alpha} \circ\left(\left.p\right|_{\left.p^{-1}\left(U_{\alpha} \cap V_{x}\right)\right|^{y}}\right)\right):(x, \alpha) \in \mathscr{I}\right\}
$$

is a holomorphic atlas on Y, where we define

$$
\left.p^{-1}\left(U_{\alpha} \cap V_{x}\right)\right|^{y}:=\text { the connected component of } p^{-1}\left(U_{\alpha} \cap V_{x}\right) \text { containing } y \text {. }
$$

