MATH 380: INTRODUCTION TO COMPLEX DYNAMICS SPRING 2021 HOMEWORK 2

Instructor: GAUTAM BHARALI

DUE: Saturday, April 10, 2021

Sunday, April 11, 2021

Remarks and instructions:

- a) You are allowed to discuss these problems with your fellow-students, but individually-written and **original** write-ups are expected for submission.
- b) Please **acknowledge** any persons from whom you received help in solving these problems—stating the problem(s) in which you took their help.
- 1. Show that

$$\mathcal{M}_{\mathbb{D}}(z_1,z_2) \,:=\, \left|rac{z_1-z_2}{1-\overline{z}_2z_1}
ight| \;\; orall z_1,z_2 \in \mathbb{D}$$

is a metric on \mathbb{D} .

2. Let X be a hyperbolic Riemann surface and let d_X denote the Kobayashi distance on X. Show that (X, d_X) is Cauchy complete.

Remarks: You may use without proof any property—whether proved in class or not—of the Poincaré distance $p_{\mathbb{D}}$ stated in class. In most textbooks on Riemann surfaces where the construction of d_X follows a differential-geometric approach, d_X is called the *hyperbolic distance* on X.

- **3.** Prove that $\widehat{\mathbb{C}}$ is the unique (up to biholomorphic equivalence) elliptic Riemann surface.
- **Tip.** If you are unable to prove this without the use of **just** the results presented in class, then you may: (a) assume without proof that Riemann surfaces are oriented surfaces, and (b) appeal to the topological classification of compact orientable surfaces.
- **4.** Let Y be a non-compact hyperbolic Riemann surface. Show that a set $K \subset Y$ is compact if and only if K is closed and is bounded with respect to d_Y .
- **5.** Give a **rigorous** and complete proof that any element $f \in \operatorname{Aut}(\mathbb{C})$ is of the form f(z) = az + b, where $a \in \mathbb{C} \setminus \{0\}$ and $b \in \mathbb{C}$.
- **6.** Let $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ be a non-constant holomorphic map, $f \not\equiv \operatorname{id}_{\widehat{\mathbb{C}}}$, having a non-empty Fatou set. Let Ω be a connected component of the Fatou set. Show that $f(\Omega)$ is also a connected component of the Fatou set of f.
- 7. Given two Riemann surfaces X and Y, recall that the definition of a holomorphic map $f: X \to Y$ (with holomorphic atlases \mathscr{A}_X and \mathscr{A}_Y on X and Y, respectively, implicit in the definition) requires f to be a priori continuous. Why do we have this requirement?

Tip. In case you are attempting, with some pair of Riemann surfaces X and Y, to cook up holomorphic atlases \mathscr{A}_X and \mathscr{A}_Y on X and Y, respectively, that are pathological in a way that a **discontinuous** function $f:X\to Y$ satisfies the chart-wise conditions of holomorphicity—even a credible attempt at this requires tools that we haven't studied. Think more fundamentally; the above question is a test of whether you are comfortable with **basic** definitions.

The following problem will go a little beyond what has been taught until now. You will need the material from the **lecture of April 6** for a definition of the words/notation used in it.

8. Let $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ be a rational map, and let ξ be a fixed point of f. Show the following relationship between the relevant multipliers:

$$\lambda_f(\xi) = \lambda_{\tau \circ f \circ \tau^{-1}} (\tau(\xi)),$$

where τ is a Möbius transformation.