MATH 380: INTRODUCTION TO COMPLEX DYNAMICS SPRING 2021

HOMEWORK 4

Instructor: GAUTAM BHARALI DUE: Tuesday, June 1, 2021

Remarks and instructions:

- a) You are allowed to discuss these problems with your fellow-students, but individually-written and **original** write-ups are expected for submission.
- b) Please **acknowledge** any persons from whom you received help in solving these problems—stating the problem(s) in which you took their help.
- 1. Let ϱ denote a (family of) norm(s) on \mathbb{R}^d with a uniform description for $d=1,2,3,\ldots$. Fix $d\in\mathbb{Z}_+$ and let ${}^\varrho H_t$ be the outer measure on \mathbb{R}^d defined by replacing $\mathscr{C}_\varepsilon(S)$ by $\mathscr{C}_\varepsilon(S;\varrho)$ in the definition of H_t —the t-dimensional Hausdorff outer measure on \mathbb{R}^d . Show that there exists a constant $C\equiv C(d)>0$ such that

$$H_t(S) \leq {}^{\varrho}H_t(S) \leq CH_t(S) \quad \forall S \subseteq \mathbb{R}^d.$$

- **2.** Fix $d \in \mathbb{Z}_+ \setminus \{1\}$ and write $S_k := \{(x_1, \dots, x_d) \in \mathbb{R}^d : x_j = 0 \ \forall j = k+1, \dots, d\}$, where $k \in \mathbb{Z}_+$ and k < d. Show that $\dim_H(S_k) = k$.
- **3.** Let K_{∞} be the Cantor set described as follows. Let $K_0 := [0,1]$. Fix $\alpha \in (0,1)$. For **each** $n = 0, 1, 2, \ldots$, we define:

 $K_{n+1} :=$ the set obtained by removing open intervals that form the middle α^{th} part of each connected component of K_n .

Define

$$K_{\infty} := \bigcap_{n=1}^{\infty} K_n.$$

Compute the Hausdorff dimension of K_{∞} .

4. Let (X,d) be a metric space and let $p \in X$. We say that a function $f: X \to \mathbb{R}$ is lower semicontinuous at p if

$$\liminf_{x \to p} f(x) \ge f(p),$$

and we say that f is lower semicontinuous if it is lower semicontinuous at every $p \in X$.

(a) Let U be a non-empty open subset of X. Show that the characteristic function χ_U is lower semicontinuous.

(b) Assume the following result (proof not required):

Let f be a non-negative lower-semicontinuous function on $\widehat{\mathbb{C}}$. Then, there exists a monotone-increasing sequence of real-valued continuous functions $\{\varphi_{\nu}\}$ such that $\lim_{\nu\to\infty}\varphi_{\nu}(z)=f(z)$ for each $z\in\widehat{\mathbb{C}}$.

Let μ be a Borel probability measure on $\widehat{\mathbb{C}}$ and let $\{\mu_n\}$ be a sequence of Borel probability measures on $\widehat{\mathbb{C}}$ such that $\mu_n \longrightarrow \mu$ in the weak* topology. Also assume that the sequence $\{\mu_n\}$ is uniformly inner regular: i.e., given any non-empty open set Ω and any $\varepsilon > 0$, there exist $N \equiv N(\Omega, \varepsilon) \in \mathbb{Z}_+$ and a compact $K_{\varepsilon} \subsetneq \Omega$ such that

$$\mu_n(\Omega \setminus K_{\varepsilon}) \leq \varepsilon \quad \forall n \geq N.$$

Let U be a non-empty open subset of $\widehat{\mathbb{C}}$. Without appealing to the dominated convergence theorem — but to a more elementary convergence theorem — show that

$$\lim_{n\to\infty}\mu_n(U) = \mu(U).$$

Remark: The reason we regard the dominated convergence theorem as non-elementary—especially in comparison to the theorem you are required to use above—is because for **general** measures on general σ -algebras, its proof is quite non-obvious.