
PICK INTERPOLATION ON THE POLYDISC: SMALL

FAMILIES OF SUFFICIENT KERNELS
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Abstract. We give a solution to Pick’s interpolation problem on the unit polydisc in Cn,
n ≥ 2, by characterizing all interpolation data that admit a D-valued interpolant, in terms
of a family of positive-definite kernels parametrized by a class of polynomials. This uses
a duality approach that has been associated with Pick interpolation, together with some
approximation theory. Furthermore, we use duality methods to understand the set of points
on the n-torus at which the boundary values of a given solution to an extremal interpolation
problem are not unimodular.

1. Introduction, some preliminaries, and a statement of results

The interpolation problem referred to in the title is as follows:

(∗) Let X1, . . . , XN be distinct points in the polydisc Dn and let w1, . . . , wN ∈ D. Find a
necessary and sufficient condition on the data {(Xj , wj) : 1 ≤ j ≤ N} such that there
exists a holomorphic function F : Dn −→ D satisfying F (Xj) = wj , j = 1, . . . , N .

Here, and elsewhere in this paper, D denotes the open unit disc with centre 0 ∈ C. We
begin by discussing some of the ideas and results that have influenced our theorems below
(although our overview of those ideas will be slightly ahistorical). We must begin by stating
that the ideas alluded to have a close connection to the work of Cole, Lewis and Wermer [7]
(also see [8] by Cole and Wermer) on the existence of interpolants in a given uniform algebra
for an interpolation problem between its maximal ideal space and D.

At the heart of the works [7] and [8] is a method, which goes back to Sarason [18], of
representing the quotient of a uniform algebra by a closed ideal as an algebra of operators
on some Hilbert space. It turns out that a formula for the quotient norm in such a setting —
which derives from the representation alluded to — can be transported to the setting of dual
algebras and their quotients by weak∗ closed ideals. In [15], McCullough provides such a
formula. He further uses the insights gained in proving this formula in such a way as to also
address the existence of interpolants in H∞(Dn) for the problem (∗).

Let us elaborate upon the phrase “dual algebra”. Given a complex, separable Hilbert space
H, let B(H) be the space of bounded operators on H. It is known that the dual of the space
of trace class operators of H is isometrically isomorphic to B(H) (endowed with the operator-
norm topology). Via this isomorphism, one can make sense of the weak∗ topology on B(H).
A unital subalgebra A of B(H) is called a dual algebra if it is weak∗ closed. Our interest
in dual algebras stems from the fact that H∞(Dn) — the class of all bounded holomorphic
functions on Dn — is a dual algebra. Hence, let us specialize to Dn. Write:

A(Dn) := C(Dn;C) ∩ O(Dn),

Tn := (∂D)n  ∂(Dn) and m = the normalized Lebesgue measure on Tn. (1.1)

Recall that the classical Hardy space H2(Tn) is the closure in L2(Tn, dm) of A(Dn)|Tn :=
{f |Tn : f ∈ A(Dn)}. The space of all multipliers preserving H2(Tn) is H∞(Dn). (The
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functions in H2(Tn) and H∞(Dn) have different domains of definition, but we assume that
readers know how this apparent problem is dealt with — and refer them to Section 3 if they
don’t.) Viewed as a subalgebra of B(H2(Tn)), it is known that H∞(Dn) is a dual algebra.
In view of the discussion above, with H = H2(Tn), it is meaningful to talk about the weak∗

closure of a subalgebra of H∞(Dn).

We now have almost all the background needed to present our first theorem, and to intro-
duce a result that has strongly influenced this theorem. We first fix some notation. We will
always use A to denote a uniform subalgebra of A(Dn). Given g ∈ L2(Tn, dm), we shall set

A2(g) := the closure of A|Tn in L2(Tn, |g|2dm).

The following spaces associated to A are very useful in the discussion of Pick interpolation
in higher dimensions:

⊥A :=
{
f ∈ L1(Tn) : ∫Tnψfdm = 0 for each ψ ∈ A

}
, (1.2)

A (A) := (the closure of A|Dn in the topology of local unif. convergence) ∩H∞(Dn). (1.3)

Furthermore, we need a definition. (We shall abbreviate Lp(Tn, dm) to Lp(Tn), p = 1, 2,∞.)

Definition 1.1. Let A be a uniform subalgebra of A(Dn). We say that A has a tame pre-
annihilator if (C(Tn;C) ∩ ⊥A) is dense in ⊥A in the L1(Tn)-norm.

Theorem 1.3 below is strongly motivated by the following result of McCullough. We
shall paraphrase it for the case of the polydisc Dn, since this is the representative case, and
the argument for the set-up in [15, Theorem 5.12] follows, after a few adjustments, nearly
verbatim the argument in the case of Dn.

Result 1.2 (paraphrasing [15, Theorem 5.12] for the case of Dn, and m as in (1.1)). Let
X1, . . . , XN be distinct points in Dn, n ≥ 2, and let w1, . . . , wN ∈ D. Fix a uniform algebra
A ⊆ A(Dn) having a tame pre-annihilator. Furthermore assume that

(a) A is approximating in modulus, and
(b) KA(Xj , ·) ∈ A|Tn for each j = 1, 2, . . . , N ,

where KA(x, ·), x ∈ Dn, is the Szegő kernel associated with the Hilbert space A2(1). Then,
there exists a function F ∈ (L∞(Tn) ∩ A2(1)) with supDn |F | ≤ 1 and such that the Poisson
integral P[F ] satisfies P[F ](Xj) = wj, for each j = 1, . . . , N , if and only if the matrices[

(1− wjwk)
〈
KA,ψ(Xj , ·),KA,ψ(Xk, ·)

〉
A2(ψ)

]N
j, k=1

≥ 0, (1.4)

for each ψ ∈ A such that |ψ| > 0 on Tn, where KA,ψ(x, ·), x ∈ Dn, is the Szegő kernel
associated with the Hilbert space A2(ψ).

We refer the reader to the beginning of Section 2 for a discussion of the term “Szegő kernel
associated to a Hilbert space”, and of the notation we follow. A uniform subalgebra A ⊆
A(Dn) is said to be approximating in modulus if for each non-negative function g ∈ C(Tn;C)
and each ε > 0, there exists a ψ ∈ A such that supTn | |ψ| − g| < ε.

In its full generality, [15, Theorem 5.12] is an interpolation theorem of the Cole–Lewis–
Wermer type. In its paraphrasing as Result 1.2, it is very interesting because it solves
the problem (∗), with interpolants belonging to the Schur class. Moreover, it does so by
providing us with an easier to understand and smaller family of kernels — i.e., those that
feature in (1.4) — necessary and sufficient for the existence of an interpolant than those
appearing in [7, 8]. (We shall not elaborate any further: interested readers are referred to
[15, Proposition 5.9].) It is not possible, when n ≥ 2, to replace the family of Pick matrices
in (1.4) with a single matricial condition as in Pick’s well-known solution to (∗) for n = 1.
Yet, the contrast between Pick’s result and the situation when n ≥ 2 is a constant stimulus
to finding a smaller and/or more explicitly defined family of kernels that are necessary and
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sufficient for the existence of an interpolant. Indeed, this has been among the motivations of
works as recent as [11, 13]. This was also our primary motivation for the following (in this
paper, D(a; r) will denote the open disc of radius r > 0 with centre a ∈ C):

Theorem 1.3. Let X1, . . . , XN be distinct points in Dn, n ≥ 2, and let w1, . . . , wN ∈ D. Let
A be a weak∗ closed subalgebra of H∞(Dn) such that A = A (A) for some uniform subalgebra
A ⊆ A(Dn) having a tame pre-annihilator. Fix an integer R ≥ 1, and define

P(R) :=
{
p ∈ C[z1, . . . , zn] : p−1{0} ∩D(0;R)

n
= ∅

}
.

There exists a function F ∈ A (A) such that F : Dn −→ D and F (Xj) = wj, for each
j = 1, . . . , N , if and only if the matrices[

(1− wjwk)
〈
KA, p(Xj , ·),KA, p(Xk, ·)

〉
A2(p)

]N
j, k=1

≥ 0 for each p ∈ P(R), (1.5)

where KA, p(x, ·), x ∈ Dn, is the Szegő kernel associated with the Hilbert space A2(p).

Remark 1.4. The hypothesis on A above holds true for A = H∞(Dn). It is well known
that H∞(Dn) = A (A(Dn)) (as per our notation in (1.3)). We refer the reader to the end of
Section 5 in [15] for a demonstration that A(Dn) has a tame pre-annihilator. See the first
paragraph of Section 6 for a gist of that discussion. In short, Theorem 1.3 provides new
information even for the basic problem (∗). Secondly, for both the classical problem (∗) and
when A  A(Dn) we give a much more explicit family of kernels than Result 1.2 that are
sufficient for interpolation. Indeed, we see that there are progressively smaller families of
kernels that are sufficient for interpolation. Lastly, Theorem 1.3 is a result of Cole–Lewis–
Wermer type, characterizing the existence of interpolants in a variety of unital weak∗ closed
subalgebras of H∞(Dn).

The last sentence of Remark 1.4 needs some explanation. Theorem 1.3 suggests that A (A),
as defined in (1.3), is weak∗ closed. In fact, with no further conditions on A ⊆ A(Dn), the
weak∗ closure of A is A (A) — see Proposition 3.6 below.

Before we introduce our next theorem, we ought to mention that the representation, alluded
to above, of the quotient of a uniform algebra by a closed ideal as an algebra of operators
on some Hilbert space was first proved for A(D) by Sarason in [18]. His approach to Pick
interpolation has been very influential. That approach led to Agler’s solution of (∗) for n = 2:
see [1] (see also the articles [5] by Ball–Trent and [2] by Agler–McCarthy). There have been
a number of articles, based on largely functional-analytic ideas, in the last two decades that
have dwelt on the problem (∗): we refer the reader to the works listed in the bibliography of
[13]. The latter work, we must mention, addresses — using a result of Bercovici–Westwood
[6] — the problem of characterizing the existence of interpolants in an arbitrary unital weak∗

closed subalgebra of H∞(Dn). Our proof of Theorem 1.3 also relies, to an extent, on some of
those ideas (and is influenced by [15]). However, it turns out to be very revealing to replace a
rather abstract isometry between A (A) and an abstract multiplier algebra used in [15] (and
elsewhere) by the Poisson integral. In fact, the Poisson integral is the key part of the mise en
place for versions of Theorem 1.3 for bounded symmetric domains (which will be the subject
of forthcoming work). Another difference: in introducing the family P(R) we revisit some
hands-on computations involving the uniform algebra A(Dn).

Our next result is aimed at understanding the functions that interpolate the data {(Xj , wj) :
1 ≤ j ≤ N} for which the interpolation problem (∗) is extremal. We say that the problem
(∗) — given the data {(Xj , wj) : 1 ≤ j ≤ N}— is extremal if it admits an interpolant F for
these data with supDn |F | = 1 but admits no interpolant of sup-norm less than 1.

The specific form of Theorem 1.7 below is motivated, in part, by a result of Amar and
Thomas [4] (see below), and by the fact that the generic extremal problem for the bidisc, and
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with N = 3, has a unique solution that is a rational inner function — see [3, Theorem 12.13].
Some interesting results on the extremal problem in higher dimensions, but still with N = 3,
were obtained recently by Kosiński [14]. Little is currently known when N ≥ 4. It is not even
known whether, for a generic extremal problem, there exists an interpolant that (generalizing
the situation in the bidisc) is an inner function. A bounded holomorphic function f on Dn is
called an inner function if the values of the radial boundary-value function f•, defined as

f•(ζ) := lim
r→1−

f(rζ) (for m-a.e. ζ ∈ Tn), (1.6)

are unimodular m-a.e. on Tn. We recall here that the fact that the limit on the right-hand
side of (1.6) exists m-a.e. on Tn is the extension of a well-known theorem of Fatou to higher
dimensions (see Section 3 for more details).

Amar and Thomas use the phrase “all the points of {Xj : 1 ≤ j ≤ N} are active con-
straints” to refer to a generic extremal problem on Dn. We shall not define this term here;
the reader is referred to [4, Section 0] for a definition. The authors are interested in the
nature of the maximum modulus set M(φ) of an interpolant φ for a given extremal problem.
To be precise:

Result 1.5 (paraphrasing [4, Theorem 1] for the case of the polydisc). Let X1, . . . , XN ,
distinct points in Dn, n ≥ 2, and w1, . . . , wN ∈ D be data for an extremal Pick interpolation
problem on Dn. Let φ be any interpolant in the Schur class. Write

M(φ) := {ζ ∈ Tn : lim supDn3z→ζ |φ(z)| = 1}.

Let [M(φ)]∧A(Dn) denote the A(Dn)-hull of M(φ). If all the points of {Xj : 1 ≤ j ≤ N} are

active constraints, then [M(φ)]∧A(Dn) ⊃ {Xj : 1 ≤ j ≤ N}. In general, [M(φ)]∧A(Dn) ∩ {Xj :

1 ≤ j ≤ N} 6= ∅.

The result above describes, in some sense, the size of M(φ). A natural question that arises
from the discussion prior to Result 1.5 is how close the interpolant φ is to an inner function.
This entails studying the size of the set {ζ ∈ Tn : |φ•(ζ)| = 1}. Result 1.5 does not quite
provide this information and, furthermore, we have the difficulty that

M(φ) ⊇ {ζ ∈ Tn : |φ•(ζ)| = 1}.

However, some of the tools used in our proof of Theorem 1.3 can be used to obtain information
on the set on the right-hand side above. To be more precise, we show that if {ζ ∈ Tn :
|φ•(ζ)| = 1} is not of full measure, then the set Tn \ {ζ ∈ Tn : |φ•(ζ)| = 1} is constrained in
a rather specific fashion. Before we can state this theorem, we need the following

Definition 1.6. Let X be a real-analytic manifold. A set S ⊆ X is called a semi-analytic
set if for each point p ∈ S, there exists an open set Up 3 p and functions fjk ∈ Cω(Up;R),
j = 1, . . . , µ, k = 1, . . . , ν, such that

S ∩ Up =
⋃

1≤j≤µ

⋂
1≤k≤ν

Sjk,

where each Sjk is either {x ∈ Up : fjk(x) = 0} or {x ∈ Up : fjk(x) > 0}.

We are now in a position to state our next theorem.

Theorem 1.7. Let X1, . . . , XN be distinct points in Dn, n ≥ 2, and let w1, . . . , wN ∈ D.
Assume that (X1, . . . , XN ; w1, . . . , wN ) are data for an extremal Pick interpolation problem.
Let φ be any interpolant in the Schur class, and let φ• denote the radial boundary-value
function of φ. Then, the set {ζ ∈ Tn : |φ•(ζ)| < 1} is contained in the disjoint union N t S,
where N is a set of zero Lebesgue measure and S is the inner limit of a sequence of proper
semi-analytic subsets of Tn.
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The proofs of Theorems 1.3 and 1.7 will be presented in Sections 5 and 6, respectively.
However, we shall need a few standard facts and a couple of essential propositions before we
can give these proofs. Section 2 will be devoted to matters that are primarily functional-
analytic in character. Section 4 will be devoted to matters pertaining to function theory in
several complex variables.

2. On duality and the weak∗ topology

This section is intended to present several results, which are primarily functional-analytic
in character, that we will need in the proofs of our theorems. Along the way, we shall explain
a few terms that had appeared in Section 1 and whose discussion had been deferred.

2.1. Szegő kernels associated to Hilbert spaces on Tn. We adopt the notation intro-
duced in Section 1. Let A be a uniform subalgebra of A(Dn), g ∈ L∞(Tn) be such that
|g| > cg for some constant cg > 0, and let A2(g) be as defined in Section 1. By construction,
A2(g) is a separable Hilbert space with the inner product

〈ψ,ϕ〉g := ∫Tnψϕ̄|g|
2dm.

In this paper, for any ϕ ∈ L1(Tn), we shall write

P[ϕ] := the Poisson integral of ϕ.

By the properties of g, ϕ ∈ L1(Tn) whenever ϕ ∈ A2(g). Thus, for every x ∈ Dn, we can
define evalx : A2(g) −→ C by

evalx(ϕ) := P[ϕ](x).

It is routine to show that evalx is a bounded linear functional for each x ∈ Dn. Hence, by
the Riesz representation theorem, there exists a function in A2(g), which we shall denote in
this paper by KA, g(x, ·) : Tn −→ C, such that

evalx(ϕ) = 〈ϕ,KA, g(x, ·)〉g .

We call KA, g(x, ·) the Szegő kernel associated to A2(g).

2.2. General functional analysis. In this subsection we state a couple of results that are
perhaps not widely seen in the form that we need (especially by readers who specialize in
complex geometry or function theory). The results themselves are very standard, and we
shall only write a line or two about their proofs. For the first such result, we first recall: if
X is a Banach space, S is a subspace of X and L is a subspace of X∗, then

S⊥ := {λ ∈ X∗ : λ(x) = 0 ∀x ∈ S},
⊥L := {x ∈ X : λ(x) = 0 ∀λ ∈ L}.

Lemma 2.1. Let X be a Banach space and E, S be closed subspaces of X with E ⊆ S. Let
q : S −→ S/E be the quotient map. For each F ∈ (S/E)∗, the map

Θ : F 7−→ F̃ ◦ q + S⊥,

where F̃ ◦ q is any (fixed) norm-preserving C-linear extension of F ◦ q to X, is well defined
and is an isometric isomorphism from (S/E)∗ to E⊥/S⊥.

The proof is utterly standard and runs along the lines of, for instance, [17, Theorem 4.9].

The second result of this subsection is about the dual of the space of trace class operators
T (H), where H and B(H) are as in Section 1. Our presentation will be very brief, and the
reader is referred to [10, Chapter 3, §18] for details of the concepts discussed below.
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Given T ∈ B(H), write |T | := (T ∗T )
1
2 . If we fix an orthonormal basis {ej : j ∈ N} of H,

the quantity ∑
j∈N
〈|T |ej , ej〉 (2.1)

is independent of the choice of the orthonormal basis {ej : j ∈ N}. The space of trace class
operators, denoted by T (H), consists of operators T ∈ B(H) for which the quantity in (2.1)
is finite. Thus, for a fixed T ∈ T (H), we have a number

‖T‖tr :=
∑
j∈N
〈|T |ej , ej〉 (2.2)

(where {ej : j ∈ N} is some orthonormal basis). It is a fact that (2.2) defines a norm and
that T (H) is a Banach space with this norm.

We will need the concept of the trace of an operator in B(H). One fixes some orthonormal
basis on H and attempts a definition as one would for a finite-dimensional H. Convergence
and independence of the choice of orthonormal basis hold true for any T ∈ T (H). For any
such T , we denote the trace by trace(T ). We will not spell out an expression for trace(T ) — we
refer the reader to [10, Chapter 3, §18]. What follows from the above procedure is that

|trace(T )| ≤ ‖T‖tr ∀T ∈ T (H). (2.3)

It turns out that T (H) is a two-sided ideal of B(H). Moreover, given T ∈ B(H) and
A ∈ T (H) we have:

‖TA‖tr ≤ ‖T‖op‖A‖tr and ‖AT‖tr ≤ ‖T‖op‖A‖tr, (2.4)

where ‖T‖op represents the operator norm of T . Because of the inequalities above, each
T ∈ B(H) induces a linear functional LT ∈ (T (H))∗ defined by LT (A) := trace(TA).

Result 2.2. The map Λ : B(H) −→ (T (H))∗ defined by

Λ(T ) := LT ∀T ∈ B(H),

where LT is defined by LT (A) := trace(TA) ∀A ∈ T (H), gives an isometric isomorphism of
B(H) onto (T (H))∗.

The above is a standard result; see, for instance, [10, Theorem 19.2].

We end this subsection by reminding ourselves of rank-one operators, which will be needed
in the next section. Given x, y ∈ H, we define the rank-one operator x⊗ y as

x⊗ y(v) := 〈v, y〉x ∀v ∈ H.
It is not hard to see that x⊗ y ∈ T (H). Also, we have

‖x⊗ y‖tr = ‖x‖H‖y‖H and trace(x⊗ y) = 〈x, y〉. (2.5)

3. Closure in the weak∗ topology on H∞(Dn)

This section is devoted to providing a simple description of the weak∗ closure of a uniform
subalgebra A ⊆ A(Dn) (and more). Such results are already implicit in the literature — the
proofs of the results that we need require known arguments to be assembled properly.

Since, in the discussions that follow, we shall use the term “weak∗” in more than one sense,
we must make a clarification:

(•) with H as in Section 2, and for any C-linear subspace V ⊆ B(H), any mention of the
weak∗ topology or of the properties of V involving the weak∗ topology, without any
further qualification, will refer to the topology that B(H) acquires as the dual space
of T (H) (which is a consequence of Result 2.2).
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Let us now fix our Hilbert space H to be H2(Tn). Each ϕ ∈ H∞(Dn) defines a multiplier
operator Mϕ ∈ B(H2(Tn)) as follows. It follows from a result of Marcinkiewicz and Zygmund
on multiple Poisson integrals that for any bounded function u on Dn, n ≥ 2, that is harmonic
in each variable separately, the limit

lim
r→1−

u(rζ) =: u•(ζ), ζ ∈ Tn, exists for m-a.e. ζ ∈ Tn; (3.1)

see [16, Section 2.3]. When n = 1, the latter statement is the classical theorem of Fatou.
Furthermore, u• is of class L∞(Tn), n ≥ 1, and satisfies

u = P[u•] and ‖u•‖L∞(Tn) = supDn |u|. (3.2)

Since any holomorphic function on Dn is harmonic in each variable separately, it follows that
to each ϕ ∈ H∞(Dn) is associated the radial boundary-value function ϕ•, which establishes
an isometric embedding of H∞(Dn) into L∞(Tn). With these facts, we have:

Mϕ(h) := ϕ•h ∀h ∈ H2(Tn) and ‖Mϕ‖op = supDn |ϕ|. (3.3)

Thus, the identification

H∞(Dn) 3 ϕ j7−→ Mϕ ∈ B(H2(Tn)) (3.4)

gives an isometric imbedding of H∞(Dn) ↪→ B(H2(Tn)). It is known that H∞(Dn) (i.e., iden-
tified with j(H∞(Dn)) ⊂ B(H2(Tn)) as discussed) is weak∗ closed — e.g., see [15, Lemma 3.6].
Hence, in the remainder of this article, when we discuss properties — or topological opera-
tions such as closure — of subsets of H∞(Dn) involving the weak∗ topology, we shall view
them interchangeably as contained in H∞(Dn) or in B(H2(Tn)) without further comment.

Now, given any C-linear subspace V ⊆ H∞(Dn), the above discussion allows us to define
V • := {ϕ• : ϕ ∈ V }, which is a subspace of L∞(Tn). Write:

(V, weak∗|L1) :=V • relative to the weak∗ topology on L∞(Tn)

viewed as the dual of L1(Tn),

wk∗(V,L1) := the closure of V • in the above topology.

The following two results provide the basis for several useful lemmas that we shall need.
Results 3.1 and 3.2 have been stated for n = 1 in [3, §3.4]. The proof of Result 3.1 for a
general n ∈ Z+ can be found in Hamilton’s thesis [12, Proposition 4.2.2]. As for Result 3.2:
it is standard, and we shall only comment briefly upon its proof.

Result 3.1. Define J : H∞(Dn)• −→ B(H2(Tn)) as

J(ϕ•) := Mϕ ∀ϕ ∈ H∞(Dn).

The map J is a linear isometric embedding of H∞(Dn)• into B(H2(Tn)) and gives a homeo-
morphism between (H∞(Dn), weak∗|L1) and (H∞(Dn),weak∗).

Result 3.2. Let {ϕν}ν∈N be a sequence in H∞(Dn). If {ϕν}ν∈N is weak∗ convergent, then

(i) sup{supDn |ϕν | : ν ∈ N} <∞; and
(ii) {ϕν(x)}ν∈N converges to ϕ(x) for some ϕ ∈ H∞(Dn) and for each x ∈ Dn.

The proof of the above relies on the fact that H∞(Dn) is weak∗ closed. The conclusion (ii) fol-
lows, essentially, from the latter: just apply LMϕν

to the rank-one operator 1⊗KA(Dn),1(x, ·),
ν = 1, 2, 3, . . . (where KA(Dn),1(x, ·) is as described in subsection 2.1). As for (i): it fol-
lows from applying the Uniform Boundedness Principle to the collection of linear functionals
{LMϕν

: ν ∈ N} ⊂ (T (H2(Tn)))∗ and observing that, by Result 2.2 and (3.3):

‖LMϕν
‖op = ‖Mϕν‖op = supDn |ϕν |.

The lemma below now follows almost immediately from Result 3.1.
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Lemma 3.3. Let V be a C-linear subspace of H∞(Dn) and let V denote the closure of V
with respect to the weak∗ topology. Then wk∗(V,L1) = V• := {ϕ• : ϕ ∈ V}.

The need for the following result might, at first glance, seem a bit mysterious. Its relevance
to the goals of this section is established by Lemma 3.5 below — for whose proof we need
Result 3.4.

Result 3.4. Let X be a separable Banach space and C a convex subset of X∗. Then C is
weak∗ closed if and only if it is sequentially weak∗ closed.

The above result is a consequence of the Krein–Šmulian Theorem — see, for instance, [9,
Chapter 5, §12] and Corollary 12.7 therein.

Lemma 3.5. A subspace of H∞(Dn) is weak∗ closed if and only if it is sequentially weak∗

closed.

Proof. Fix a subspace V ⊆ H∞(Dn). Next (in the notation of Result 3.4), set

X = L1(Tn) and C = J−1( j(V )),

where J and j are as given by Result 3.1 and (3.4), respectively. By Result 3.1, a sequence
{ϕν} ⊂ V is weak∗ convergent if and only if {ϕ•ν} is convergent in (V, weak∗|L1). Thus, as
L1(Tn) is separable, the lemma follows from Result 3.4 and Lemma 3.3. �

The above lemma gives us the main result of this section.

Proposition 3.6. Let V be a C-linear subspace of A(Dn). Then:

(1) the closure of V in the weak∗ topology equals

(the closure of V |Dn in the topology of pointwise convergence) ∩ L∞(Dn).

(2) the closure of V in the weak∗ topology equals

(the closure of V |Dn in the topology of local uniform convergence) ∩ L∞(Dn).

In particular, the weak∗ closure of a uniform subalgebra A ⊆ A(Dn) is A (A).

Proof. The proof of (1) is immediate from the last lemma and Result 3.2. Now, given an
element ϕ in the weak∗ closure of V , any weak∗ convergent sequence {ϕν} ⊂ V of which
ϕ is the pointwise limit is — owing to Result 3.2 — uniformly bounded. By the pointwise
convergence of the latter sequence and Montel’s Theorem, we deduce that ϕν −→ ϕ locally
uniformly. Hence (2) follows. �

4. Some function theory in several complex variables

Although we have used the term “uniform algebra” several times above, it might be helpful
to recall the definition. Given a compact Hausdorff space X, a uniform algebra on X is a
subalgebra of C(X;C) that is closed with respect to the uniform norm, contains the constants,
and separates the points of X. Given a uniform algebra A, we call a subalgebra B ⊂ A a
uniform subalgebra of A if B is itself a uniform algebra.

In this paper, we are interested in uniform algebras on Dn. We begin with the following
result.

Lemma 4.1. Let X1, . . . , XN , N ≥ 2, be distinct points in Dn. Let A be a uniform subalgebra
of A(Dn). There exist functions Φ1, . . . ,ΦN ∈ A such that

Φj(Xk) = δjk, j, k = 1, . . . , N,

where δjk denotes the Kronecker symbol.
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The proof of this lemma relies on the fact that A separates points on Dn and is closed
under multiplication. We shall skip the proof since it is utterly elementary.

The above lemma is essential to Proposition 4.2, which we shall use several times in
Sections 5 and 6. First, we need some notations. Let X1, . . . , XN be as in Lemma 4.1
and fix a uniform subalgebra A ⊆ A(Dn). Denote the set {X1, . . . , XN} by X, and write

IA,X := the weak∗ closure of IA,X (viz., the ideal of all functions in A that vanish on X).

Note that, by Proposition 3.6, each ψ ∈ IA,X is a bounded holomorphic function. Thus, by
the discussion at the beginning of Section 3, the following make sense:

⊥IA,X :=
{
f ∈ L1(Tn) : ∫Tnψ

•fdm = 0 for each ψ ∈ IA,X

}
,

⊥A (A) :=
{
f ∈ L1(Tn) : ∫Tnψ

•fdm = 0 for each ψ ∈ A (A)
}
.

Hereafter, we shall abbreviate the Szegő kernel associated to H2(Tn) — i.e., KA(Dn),1(x, ·)
in the notation of subsection 2.1 — to K(x, ·), x ∈ Dn. With this, we state:

Proposition 4.2. Let X1, . . . , XN , N ≥ 2, be distinct points in Dn. Let A be a uniform
subalgebra of A(Dn). For each f ∈ ⊥IA,X, let [f ] denote the ⊥A (A)-coset of f . There exist
constants a1, . . . , aN ∈ C, which are independent of the choice of representative of the coset
[f ] ∈ ⊥IA,X/

⊥A (A), such that

[f ] =

[ ∑
1≤j≤N

ajK(Xj , ·)
]
.

Proof. Let us define a linear functional L[f ] : A (A) −→ C by

L[f ](φ) := ∫Tnφ
•fdm. (4.1)

We must first establish the following:

Claim. L[f ] is independent of the choice of representative of the coset [f ] ∈ ⊥IA,X/
⊥A (A).

Suppose f̃ is some other representative of the coset [f ]. Then, there exists a g ∈ ⊥A (A) such

that f̃ = f + g. By the definition of ⊥A (A), we have:

∫Tnφ
•f̃dm = ∫Tnφ

•fdm+ ∫Tnφ
•g dm = ∫Tnφ

•fdm.

Since φ was chosen arbitrarily from A (A), the claim follows.

Since f ∈ ⊥IA,X, L[f ] vanishes on IA,X.

By Lemma 4.1, we can find functions Φ1, . . . ,ΦN ∈ A such that

Φj(Xk) = δjk, j, k = 1, . . . , N.

Set aj := L[f ](Φj), j = 1, . . . , N . For each φ ∈ A (A), write

φ̃ := φ−
∑

1≤j≤N
φ(Xj)Φj ,

which belongs to IA,X (since the weak∗ closed ideals IA,X and {ψ ∈ A (A) : ψ(x) = 0 ∀x ∈ X}
coincide). Thus

L[f ](φ) = L[f ]

( ∑
1≤j≤N

φ(Xj)Φj

)
=

∑
1≤j≤N

ajφ(Xj)

=
∑

1≤j≤N
aj

∫
Tn
φ•K(Xj , ·)dm ∀φ ∈ A (A). (4.2)
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In the last equality, we use the fact that φ• is the boundary-value function of a function
in H∞(Dn) and, therefore, is in H2(Tn). Then, (4.2) follows from the discussion in subsec-
tion 2.1. But note that the function∑

1≤j≤N
ajK(Xj , ·) ∈ L1(Tn)

itself belongs to ⊥IA,X. Thus, from (4.2), we see that f and
∑

1≤j≤N ajK(Xj , ·) differ by a

function in ⊥A (A). Hence the result. �

The final result of this section is central to the proof of Theorem 1.3. At its heart is a close
reading of the reason for the well-known fact that A(Dn)|Tn is approximating in modulus
(see the paragraph following Result 1.2 for a definition). The class P(R) below is as defined
in the statement of Theorem 1.3.

Proposition 4.3. Fix a positive integer R ≥ 1. Let f be a positive, continuous function on
Tn. For each ε > 0, there exists a polynomial p ∈ P(R) such that

supTn |f − |p|2| < ε.

Proof. Let Fk denote the k-th Fejér kernel on Tn (i.e., the kernel associated to the Cesàro
mean involving the characters parametrized by (α1, . . . , αn) ∈ Zn, −k ≤ αj ≤ k). Since f is
positive and continuous, log(f) is continuous as well. By Fejér’s theorem:

log(f) ∗ Fk−→ log f uniformly, as k →∞. (4.3)

By the properties of the Fejér kernels, log(f)∗Fk is a trigonometric polynomial and, as log(f)
is real-valued, there exist polynomials Pk ∈ C[z1, . . . , zn] such that

log(f) ∗ Fk(eiθ1 , . . . , eiθn) = Re
(
Pk(e

iθ1 , . . . , eiθn)
)
.

Let us now define gk : Cn −→ C by gk(z) := ePk(z1,...,zn)/2, z ∈ Cn. By (4.3) and the fact

that |eA| = eRe(A) for any A ∈ C, we get∣∣ gk|Tn ∣∣2 −→ f uniformly, as k →∞. (4.4)

Let us now set

m := maxζ∈Tn f(ζ), and M :=
√

2
√

(m+ ε/2) + ((m+ ε/2)1/2 + 1)2.

For simplicity of notation, let us abbreviate supTn | · | to ‖ · ‖Tn . By (4.4), there exists a
positive integer kε such that ∥∥ |gk|2 − f∥∥Tn < ε/2 ∀k ≥ kε. (4.5)

Now set
µR, ε := minR ·Dn |gkε | (which is a strictly positive number).

The Taylor expansion of gkε , the latter being entire, converges to gkε uniformly on any fixed
compact subset of Cn. Thus, we can find a polynomial p ∈ C[z1, . . . , zn] such that

supR ·Dn |gkε − p| < min
( ε

2M
,
µR, ε

2
, 1
)
. (4.6)

By our definition of µR, ε, p
−1{0} ∩ (R · Dn) = ∅. Hence, p ∈ P(R).

Finally — making use of (4.6) — we estimate:

‖ |gkε |2 − |p|2‖Tn ≤ ‖gkε + p‖Tn × ‖gkε − p‖Tn

≤
√

2
√
‖gkε‖2Tn + ‖p‖2Tn

ε

2M
≤ ε/2.

By the above estimate and (4.5), we see that p is the desired polynomial. �
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5. The proof of Theorem 1.3

Before we give a proof of Theorem 1.3, it will be very useful to state a special case of
Lemma 2.1 adapted to the situation that is of interest to us. The spaces of greatest interest
to us are the quotient spaces:

A (A)/IA,X and ⊥IA,X/
⊥A (A), (5.1)

these spaces being exactly as introduced in Section 4. Since this lemma will require some
preliminary discussion, we divide this section into two subsections.

5.1. A few essential auxiliary lemmas. We will need to work with a more general col-
lection of objects than A. To this end — with A ⊆ A(Dn) as above — let I denote a uniformly
closed ideal of A. Write

I := the weak∗ closure (in the sense of (•) in Section 3) of I.

As I is a subspace of A ⊂ H∞(Dn) we can, in view of Proposition 3.6 and the discussion at
the beginning of Section 3, define:

⊥I :=
{
f ∈ L1(Tn) : ∫Tnψ

•fdm = 0 for each ψ ∈ I
}
.

With these notations, we have:

Lemma 5.1. Let A be a uniform subalgebra of A(Dn), and let I be a uniformly closed ideal
in A. Then

⊥I = ⊥I :=
{
f ∈ L1(Tn) : ∫Tnψ

•fdm = 0 for each ψ ∈ I
}
.

Proof. It is clear that ⊥I ⊆ ⊥I. Consider an arbitrary φ ∈ I . By (3.1) (we reiterate: owing
to Proposition 3.6, φ ∈ H∞(Dn)), we have:

φ(r·)|Tn −→ φ• m-a.e. as r → 1−.

Invoking Proposition 3.6 once more, there exists a sequence {ϕν} ⊂ I such that ϕν −→ φ
uniformly on compact subsets of Dn. Let us fix an r ∈ (0, 1). Then:

ϕν(r·)−→ φ(r·) uniformly on each D(0; ρ) n, ρ ∈ (0, 1).

By Proposition 3.6, φ(r·) ∈ A(Dn) ∩ I , and hence in I, for every r ∈ (0, 1). Since φ• ∈
L∞(Tn), we may apply the dominated convergence theorem to get:

0 = lim
r→1−

∫Tn
(
φ(r·)|Tn

)
g dm = ∫Tnφ

•g dm ∀g ∈ ⊥I. (5.2)

This establishes that ⊥I ⊆ ⊥I , and hence the result. �

The principal lemma of this subsection follows. But first, a few more words on our notation:
we shall use [ · ] to denote cosets in either of the two quotient spaces named in (5.1). However,
we shall avoid ambiguity by using Greek letters when referring to cosets in A (A)/IA,X and

standard Roman italics when referring to cosets in ⊥IA,X/
⊥A (A).

Lemma 5.2. Let A be a uniform subalgebra of A(Dn) and let X = {X1, . . . , XN}, where the
latter points are as in Theorem 1.3. For each [φ] ∈ A (A)/IA,X, define

L[φ]([f ]) :=

∫
Tn
φ•fdm ∀[f ] ∈ ⊥IA,X/

⊥A (A).

Then:

(1) L[φ]([f ]) is independent of the choice of representatives of the cosets [f ] ∈ ⊥IA,X/
⊥A (A)

and [φ] ∈ A (A)/IA,X. Furthermore, L[φ] is an element of (⊥IA,X/
⊥A (A))∗.

(2) ‖[φ]‖ = ‖L[φ]‖op for every [φ] ∈ A (A)/IA,X.
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Proof. The proof of (1) is routine in view of the Claim in the proof of Proposition 4.2. Note
that L[φ]([f ]) = L[f ](φ) of Proposition 4.2. Thus, we already have a proof of the independence
of L[φ]([f ]) of the choice of the representative of the coset [φ].

The independence of the choice of representative of the coset [f ] follows from the definition
of ⊥A (A). That L[φ] ∈ (⊥IA,X/

⊥A (A))∗ is now routine.

To prove (2), we appeal to Lemma 2.1. We take

X = L1(Tn), S = ⊥IA,X, and E = ⊥A (A)

to get (⊥IA,X/
⊥A (A)

)∗ ∼=isometric (⊥A (A))⊥/(⊥IA,X)⊥. (5.3)

We now need to understand — in the notation of Lemma 2.1 — the coset Θ(L[φ]). However,

this will first require us to better understand the subspaces (⊥IA,X)⊥, (⊥A (A))⊥ ⊂ L∞(Tn).

Recall the definitions of ⊥IA,X and ⊥A (A) — it follows from the L1–L∞ duality that (see [17,
Theorem 4.7], for instance):

(⊥IA,X)⊥ = wk∗(IA,X,L1), (5.4)

(⊥A (A))⊥ = wk∗(A (A),L1). (5.5)

By Lemma 3.3, we have

wk∗(IA,X,L1) = I •A,X and wk∗(A (A),L1) = A (A)•. (5.6)

From the above identities and the discussion at the beginning of Section 3, together with
(5.3), (5.4) and (5.5), we deduce the useful fact:(⊥IA,X/

⊥A (A)
)∗ ∼=isometric A (A)/IA,X,

where the isometry is given by the isomorphism Θ described in Lemma 2.1.

Now, Θ(L[φ]) is a coset in A (A)/IA,X, which we shall call [θφ]. As Θ is an isometry,

‖[θφ]‖ = ‖L[φ]‖op . (5.7)

Unravelling the construction of Θ (and by the manner in which a function in L∞(Tn) induces
a bounded linear functional of L1(Tn)) we have that for any F ∈ (⊥IA,X/

⊥A (A))∗

F ([f ]) = LΘ(F )([f ]) ∀ [f ] ∈ ⊥IA,X/
⊥A (A).

Thus, if φ is any representative of [φ] and θ any representative of [θφ], then:

L[φ]([f ]) = ∫Tnθ
• g̃ dm ∀ g̃ ∈ [f ] and

∀ [f ] ∈ ⊥IA,X.

From this we infer that (θ• − φ•) ∈ (⊥IA,X)⊥ = I •A,X by (5.6). But this means that ‖[θ]‖ =

‖[θφ]‖ = ‖[φ]‖. Therefore, by (5.7) we have ‖[φ]‖ = ‖L[φ]‖op. �

5.2. A key proposition and Theorem 1.3. We begin with a proposition that is the key
result leading to the proof of Theorem 1.3. It gives us a way of linking a function ψ belonging
to the dual algebra A , that interpolates the data {(Xj , wj) : 1 ≤ j ≤ N}, to conditions for
supDn |ψ| to be ≤ 1. We shall continue to use the notation introduced in Sections 1 and 4,
and extend the notation where needed. For instance

I2
A,X(g) := the closure of IA,X

∣∣
Tn in L2(Tn, |g|2dm),

where g ∈ L∞(Tn) and such that |g| > cg for some constant cg > 0.

With those remarks, we can state and prove our key proposition.
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Proposition 5.3. Let X1, . . . , XN be distinct points in Dn. Let A be a weak∗ closed sub-
algebra of H∞(Dn) such that A = A (A) for some uniform subalgebra A ⊆ A(Dn) having a
tame pre-annihilator. Fix an integer R ≥ 1, and let P(R)  C[z1, . . . , zn] be the class defined
in Theorem 1.3. For any coset [φ] ∈ A (A)/IA,X

‖[φ]‖ = sup
{∥∥ΠA2(p) ◦M∗φ ◦Πp,X

∥∥
op

: p ∈ P(R)
}
, (5.8)

where

ΠA2(p) := the orthogonal projection of L2(Tn) onto A2(p),

Πp,X := the orthogonal projection of A2(p) onto A2(p)	 I2
A,X(p).

Proof. Lemma 5.2 suggests that to establish (5.8) we can work with the linear functionals
L[φ] ∈ (⊥IA,X/

⊥A (A))∗. Let us fix a coset [f ]. By Proposition 4.2, we can find constants
a1, . . . , aN ∈ C— which depend only on the coset [f ] — such that

[f ] =

[ ∑
1≤j≤N

ajK(Xj , ·)
]
. (5.9)

In what follows (as well as in the next section), we shall use ‖ · ‖1 to denote the L1-norm on
L1(Tn). Furthermore, ||[f ]|| will denote the quotient norm of [f ]. Fix an ε > 0. It follows
from (5.9) that there exists a function Gε ∈ ⊥A (A) such that∥∥∥∥ ∑

1≤j≤N
ajK(Xj , ·) +Gε

∥∥∥∥
1

< ||[f ]||+ ε.

(It is understood from (5.9) that the function
∑

1≤j≤N ajK(Xj , ·) ∈ ⊥IA,X — this follows

from the reproducing property of the Szegő kernel for H2(Tn) ⊃ A (A)•.) By Lemma 5.1 and
the fact that A has a tame pre-annihilator, we can find a function Hε ∈ (C(Tn;C) ∩ ⊥A (A))
such that ‖Gε −Hε‖1 < ε. Let us now write:

Fε =
∑

1≤j≤N
ajK(Xj , ·) +Hε.

By (5.9) and the subsequent discussion, we have:

(A) [Fε] = [f ];
(B) Fε ∈ C(Tn;C);
(C) ‖Fε‖1 < ||[f ]||+ 2ε.

Recall that we have fixed an R ≥ 1. Now, |Fε|+3ε/4 is a strictly positive continuous function
on Tn. Thus, by Proposition 4.3, there exists a polynomial p(ε) ∈ P(R) such that

|Fε(ζ)|+ ε > |p(ε)(ζ)|2 > |Fε(ζ)|+ ε/2 ∀ζ ∈ Tn. (5.10)

In this paragraph, we shall take g to be any function in A(Dn) such that g|Tn is non-
vanishing. Write

Fg(ζ) := Fε(ζ)/|g(ζ)|2 ∀ζ ∈ Tn.
The projection operator Πg,X will have a meaning analogous to Πp,X defined above. In view
of Lemma 3.3, it follows from a standard argument (see the first one-third of McCullough’s
argument for Proposition 5.9 in [15], for instance) that A (A)• and I •A,X ⊂ (A2(1)∩L∞(Tn)).

Thus, by the properties of g, we have:

A (A)• ⊂ A2(g) and I •A,X ⊂ I
2
A,X(g). (5.11)

We now compute:

L[φ]([f ]) = L[φ]([Fε]) (by (A) above)

= 〈φ• , Fg〉g



14 GAUTAM BHARALI AND VIKRAMJEET SINGH CHANDEL

= 〈Πg,X(φ•), Fg〉g (by (5.11) and Lemma 5.2-(1))

= 〈φ, Πg,X(Fg)〉g
= 〈1,M∗φ ◦Πg,X(Fg)〉g.

Hence, we get the useful inequality:

|L[φ]([f ])| ≤ ‖ΠA2(g) ◦M∗φ ◦Πg,X‖op ‖1‖g ‖Fg‖g, (5.12)

which holds true for any g with the properties stated above. Here ‖ · ‖g denotes the norm on
A2(g).

At this stage, we shall take g = p(ε) in (5.12). Since p(ε) ∈ P(R), and R ≥ 1, p(ε) has all
the properties required of g in the previous paragraph. We ought to state that, after having
chosen g = p(ε), the rest of the argument for this proof uses the same estimates that conclude
the proof of [15, Theorem 5.13]. By (5.10), we have

|Fp(ε)(ζ)| < 1 ∀ζ ∈ Tn.

Therefore, by the last inequality, (5.10) and (C) above, we have:

‖Fp(ε)‖
2
p(ε)

< ∫Tn |p
(ε)|2 dm < ||[f ]||+ 3ε,

‖1‖2
p(ε)

= ∫Tn |p
(ε)|2 dm < ||[f ]||+ 3ε.

Combining the above inequalities with (5.12) and letting ε↘ 0, we get:

|L[φ]([f ])|
||[f ]|| ≤ sup

{∥∥ΠA2(p) ◦M∗φ ◦Πp,X

∥∥
op

: p ∈ P(R)
}

if [f ] 6= [0].

Since [f ] was chosen arbitrarily, the right-hand side of the above inequality actually dominates
‖L[φ]‖op. We now appeal to Lemma 5.2 to get

‖[φ]‖ ≤ sup
{∥∥ΠA2(p) ◦M∗φ ◦Πp,X

∥∥
op

: p ∈ P(R)
}
.

The reverse inequality trivially holds true. This establishes (5.8). �

Finally, we present:

The proof of Theorem 1.3. Most of the steps of this proof are similar to those in the proofs
of results analogous to Theorem 1.3 in the literature cited in Section 1. Hence, we shall be
brief. We begin with two very standard facts. For each p ∈ P(R).

• The set {KA, p(X1, ·), . . . ,KA, p(XN , ·)} spans A2(p)	 I2
A,X(p).

• For any φ ∈ A (A), we have

M∗φ(KA, p(Xj , ·)) = φ(Xj)KA, p(Xj , ·), j = 1, . . . , N.

For any f ∈ A2(p)	 I2
A,X(p), there exist c1, . . . , cN ∈ C such that

f =
∑

1≤j≤N
cjKA, p(Xj , ·),

whence, we compute:

ΠA2(p) ◦M∗φ ◦Πp,X(f) =
∑

1≤j≤N
cjφ(Xj)KA, p(Xj , ·).

From this it follows, exactly (and by an elementary computation) as in several of the works
cited in Section 1 that:∥∥ΠA2(p) ◦M∗φ ◦Πp,X

∥∥
op
≤ 1

⇐⇒
[
(1− φ(Xj)φ(Xk))

〈
KA, p(Xj , ·),KA, p(Xk, ·)

〉
A2(p)

]N
j, k=1

≥ 0. (5.13)
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Now, suppose that there exists a function F ∈ A (A) such that F (Xj) = wj for each j =
1, . . . , N and such that supDn |F | ≤ 1. This implies that ‖[F ]‖ ≤ 1. Then, by Proposition 5.3
and (5.13), (1.5) follows.

Conversely, assume (1.5). Let Φ1, . . . ,ΦN ∈ A be as given by Lemma 4.1. Write

φ :=
∑

1≤j≤N
wjΦj ∈ A.

Observe that φ(Xj) = wj for j = 1, . . . , N . By (5.13) and Proposition 5.3, we get ‖[φ]‖ ≤ 1.
From the latter we have, by definition:

For each ν ∈ Z+, ∃ψν ∈ IA,X such that ‖ φ|Tn + ψ•ν‖∞ = supDn |φ+ ψν | < 1 + 1/ν .

By Montel’s theorem, there exists a sequence ν1 < ν2 < ν3 < . . . and a holomorphic function
F defined on Dn such that

φ+ ψνk−→ F uniformly on compact subsets of Dn as k →∞.

By Proposition 3.6, F ∈ A (A). Clearly F (Xj) = wj for j = 1, . . . , N , and supDn |F | ≤ 1. �

6. The proof of Theorem 1.7

In this section, it will be assumed throughout that n ≥ 2. Before we give a proof of
Theorem 1.7, let us look at an explicit description of the space ⊥H∞(Dn). Write

Yn := Zn \ Nn,

where N = {0, 1, 2, . . . }. Then, it is not hard to show that

⊥H∞(Dn) = the closure in L1(Tn) of spanC{z
α1
1 zα2

2 . . . zαnn |Tn : (α1, . . . , αn) ∈ Yn} (6.1)

(an argument for the above can be found in [15, Section 5]).

We can now present:

The proof of Theorem 1.7. We shall use notations analogous to those in Sections 4 and 5.
Accordingly, we shall denote by IX the following ideal:

IX := the weak∗ closure of the set of all A(Dn)-functions that vanish on X,

where X = {X1, . . . , XN}. We shall, in a very essential way, need to work with the spaces

H∞(Dn)/IX and ⊥IX/
⊥H∞(Dn).

The notation ‖[ψ]‖, where ψ ∈ H∞(Dn), will have the same meaning as in Section 5. Simi-
larly, ||[f ]|| will denote the quotient norm on ⊥IX/

⊥H∞(Dn).

Let φ be an interpolant in H∞(Dn) for the given data. Since, by hypothesis, the data are
extremal, we have

‖[φ]‖ = 1. (6.2)

We appeal again to Lemma 5.2. Recall, yet again, the linear functional:

L[φ] : ⊥IX/
⊥H∞(Dn) 3 [f ] 7−→

∫
Tn
φ•fdm.

By (6.2) and Lemma 5.2, we have ‖L[φ]‖op = 1. Furthermore, as H∞(Dn)/IX is finite-
dimensional, it follows from Lemma 5.2-(2) that

∃f0 ∈ ⊥IX such that ||[f0]|| = 1 and

∫
Tn
φ•f0dm = 1. (6.3)
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Step 1. Finding “nice” coset-representatives for [f0]

By Proposition 4.2 — taking A = A(Dn), whence A (A) = H∞(Dn) — there exist constants
a1, . . . , aN ∈ C, not all of which are 0, such that

[f0] =

[ ∑
1≤j≤N

ajK(Xj , ·)
]
.

(Recall that, by the reproducing property, K(Xj , ·) ∈ ⊥IX for each j = 1, . . . , N .) By
definition

||[f0]|| := inf{‖f0 + g‖1 : g ∈ ⊥H∞(Dn)}.
So, if we fix ε > 0, there exists a function gε ∈ ⊥H∞(Dn) such that[ ∑

1≤j≤N
ajK(Xj , ·) + gε

]
= [f0] and 1 ≤

∥∥∥∥∥∥
N∑
j=1

ajK(Xj , ·) + gε

∥∥∥∥∥∥
1

< 1 + ε/2. (6.4)

From the brief discussion prior to this proof, (6.1) in particular, it follows that there exists a
polynomial Pε, in z and z, of the form

Pε(z) =
∑
α∈F(ε)

Cαz
α1
1 zα2

2 . . . zαnn ,

where F(ε) is a finite subset of Yn, such that

‖ Pε|Tn − gε‖1 < ε/2. (6.5)

By the form of the polynomial Pε, we see that Pε ∈ ⊥H∞(Dn). Thus, by (6.4) and (6.5), we
have

[f0] =

[ ∑
1≤j≤N

ajK(Xj , ·) + Pε|Tn
]

and 1 ≤

∥∥∥∥∥∥
N∑
j=1

ajK(Xj , ·) + Pε|Tn

∥∥∥∥∥∥
1

< 1 + ε. (6.6)

Let us write

Gε :=
∑

1≤j≤N
ajK(Xj , ·) + Pε|Tn .

Let us emphasise how regular Gε is. Note, firstly, that for each Xj ∈ X, K(Xj , ·) is holomor-

phic (in its second variable) in some neighbourhood — which depends on Xj — of Dn. Now
define the function γε which is holomorphic on Ann(0; 1 ± δ)n — where δ > 0 is determined
by X1, . . . , XN — as follows:

γε(z) :=
∑

1≤j≤N
ajK(Xj , z) +

∑
α∈F(ε)

Cα

n∏
j=1

zα1 ∀(z1, . . . , zn) ∈ Ann(0; 1± δ)n.

Observe that

γε|Tn = Gε. (6.7)

In short, associated to [f0] is a family of coset-representatives Gε that are restrictions to Tn
of antiholomorphic functions and whose L1-norms decrease to 1.

Step 2. Finding a sequence of measures with useful properties

Since γε ∈ O(Ann(0; 1 ± δ)n), it follows from (6.7) that G−1
ε {0} is a real-analytic subset of

Tn. As Gε 6≡ 0, it follows from the basic theory of real-analytic sets that

m(G−1
ε {0}) = 0 for each ε > 0. (6.8)
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Let us now define the positive measures µε on Tn such that dµε = |Gε|dm. These measures
have the following useful property:

µε
[
{ζ ∈ Tn : 1− |φ•(ζ)| ≥

√
ε}
]
≤ 1√

ε

∫
Tn

(1− |φ•|)|Gε|dm

<
1√
ε

(
(1 + ε)−

∣∣∣∣∫
Tn
φ•Gεdm

∣∣∣∣ ) =
√
ε, (6.9)

which follows from Chebyshev’s inequality, (6.3) and (6.6).

We would ultimately like to estimate the Lebesgue measures of the above sets. To that
end, we have the following observation. Write

Γε(ζ) :=

{
1/|Gε(ζ)|, if ζ /∈ G−1

ε {0},
0, if ζ ∈ G−1

ε {0}.

Clearly, Γε ∈ L1(Tn, dµε) for each ε > 0. It follows from (6.8) that

m(E) =

∫
E

Γεdµε for every Lebesgue measurable set E ⊆ Tn (6.10)

for each ε > 0.

Step 3. Completing the proof

Recall that φ• is undefined on a set of Lebesgue measure zero. It will not affect the conclusions
of the argument below if we fix φ•(ζ) = 0 on the latter set. Note that

{ζ ∈ Tn : 1− |φ•(ζ)| > 0} = lim inf
k→∞

{ζ ∈ Tn : 1− |φ•(ζ)| > 1/k3}. (6.11)

Denote the set on the left-hand side of the above equation as S and write Ek := {ζ ∈ Tn :
1− |φ•(ζ)| > 1/k3}. Let us define

Ak := {ζ ∈ Ek : |G1/k6(ζ)| ≥ 1/k},
Bk := {ζ ∈ Ek : |G1/k6(ζ)| < 1/k}, k = 1, 2, 3, . . .

From (6.9), we have µ1/k6(Ak) < 1/k3. Thus, from (6.10), we get

m(Ak) =

∫
Ak

1

|G1/k6 |
dµ1/k6 ≤

1

k2
∀k ∈ Z+. (6.12)

Let us define Sk := {ζ ∈ Tn : |G1/k6(ζ)| < 1/k}. Then

Sk = {ζ ∈ Tn : −G1/k6(ζ)G1/k6(ζ) > −1/k2}, k = 1, 2, 3, . . . ,

whence, by (6.7), each Sk is semi-analytic. And clearly, as ‖G1/k6‖1 ≥ 1, each Sk is a proper
subset of Tn.

Claim. S ⊆ lim supk→∞Ak ∪ lim infk→∞ Sk.

Pick a ζ ∈ S. Then, ∃k1(ζ) ∈ N such that ζ ∈ Ek ∀k ≥ k1(ζ). Suppose ζ /∈ lim supk→∞Ak.
By definition, ∃k2(ζ) ∈ N such that ζ /∈ Ak ∀k ≥ k2(ζ). As Ak and Bk partition Ek, it follows
that

ζ ∈ Bk ⊆ Sk ∀k ≥ max(k1(ζ), k2(ζ)).

The claim follows.

Recall that m is normalized to be a probability measure. Thus, by (6.12) and the Borel–
Cantelli lemma, we have m(lim supk→∞Ak) = 0. Finally, let us write:

N := lim sup
k→∞

Ak and S := lim inf
k→∞

Sk.

Since Ak ∩ Sk = ∅ ∀k ∈ Z+, it is very easy to see that S ∩N = ∅. Thus S ⊂ N t S. �
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