UM 204 : INTRODUCTION TO BASIC ANALYSIS
 SPRING 2019
 HOMEWORK 10

1. Let $r \in \mathbb{R}$ and let p be a positive real number. Consider the function $f:[-1,1] \longrightarrow \mathbb{R}$ given by:

$$
f(x):= \begin{cases}x^{r} \sin \left(1 / x^{p}\right), & \text { if } 0<x \leq 1 \\ 0, & \text { if }-1 \leq x \leq 0\end{cases}
$$

Find (i) a necessary $\&$ sufficient condition on (r, p) for f to be differentiable at $0 ;(i i)$ a necessary \& sufficient condition on (r, p) for f to be differentiable at 0 and such that f^{\prime} is continuous at 0 . Note. You may assume that the function $\phi_{r}: x \longmapsto x^{r}, x \in(0, \infty)$ is differentiable on $(0, \infty)$ for any $r \in \mathbb{R}$, and $\phi_{r}^{\prime}(x)=r x^{r-1} \forall x \in(0, \infty)$.

2-5. Problems 4-6 and 18 from "Baby" Rudin, Chapter 5.
6. Let I be an open interval and let $f: I \longrightarrow \mathbb{R}$ be an injective differentiable function.
(a) Show that $f(I)$ is an open interval.
(b) Show that f^{-1} is differentiable at each y belonging to the set

$$
\mathscr{R}_{f}:=\left\{y \in f(I): f^{\prime}\left(f^{-1}(y)\right) \neq 0\right\}
$$

and that

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)} \text { for each } y \in \mathscr{R}_{f}
$$

Hint. First deduce that f^{-1} is continuous.
7. Find a rational number that approximates $\sqrt{10}$ by

- choosing an appropriate interval $[a, b] \subseteq \mathbb{R}$ and an appropriate function $f:[a, b] \longrightarrow \mathbb{R}$; and
- letting your approximation be the Taylor polynomial $T_{f}^{3}\left(x ; x_{0}\right)$ - around a suitable $x_{0} \in$ $[a, b]$ - evaluated at a convenient integer/rational number, say, $\alpha \in[a, b]$.

Now, with your choices of x_{0} and α, give an efficient and explicit bound on the error in your approximation: i.e., an efficient upper bound on

$$
\left|\sqrt{10}-T_{f}^{3}\left(\alpha ; x_{0}\right)\right|
$$

