UM 204 : INTRODUCTION TO BASIC ANALYSIS SPRING 2019 HOMEWORK 1

Instructor: GAUTAM BHARALI

Assigned: JANUARY 11, 2019

1. Show that for any natural number $n, S(n) \neq n$. (Here, $S(\cdot)$ denotes the successor as postulated by Peano's axioms.)

2. Prove, using Peano's axioms, that if P(n) denotes some property involving the natural number n, and if

- P(1) is true, and
- whenever P(n) is true, then P(S(n)) is true,

then P(n) is true for every natural number $n \neq 0$.

3. Recall the binary operations + and \cdot given by Peano arithmetic. Prove that both operations are commutative.

4. Let \mathscr{F} be a non-empty set of sets. Recall that we defined $\bigcap_{S \in \mathscr{F}} S$ by choosing a set $A \in \mathscr{F}$ and appealing to the Axiom of Specification to define $\bigcap_{S \in \mathscr{F}} S$ as a certain subset of A. Show that the set $\bigcap_{S \in \mathscr{F}} S$ does not depend on the choice of A.

5. Let X be a set and let \mathscr{F} be a non-empty set of subsets of S. Prove the following (which is one of the two **de Morgan laws**)

$$X \setminus \left(\bigcap_{S \in \mathscr{F}} S \right) = \bigcup_{S \in \mathscr{F}} (X \setminus S).$$

6. Let X and Y be two non-empty sets. For $a \in X$ and $b \in Y$, recall that the ordered pair (a, b) is the abbreviation for a certain set. Show, mentioning **clearly** the axioms to which you are appealing, that if $(a, b), (x, y) \in X \times Y$, then (a, b) = (x, y) if and only if a = x and b = y.