UM 204 : INTRODUCTION TO BASIC ANALYSIS
 SPRING 2019
 HOMEWORK 1

Instructor: GAUTAM BHARALI

Assigned: JANUARY 11, 2019

1. Show that for any natural number $n, S(n) \neq n$. (Here, $S(\cdot)$ denotes the successor as postulated by Peano's axioms.)
2. Prove, using Peano's axioms, that if $P(n)$ denotes some property involving the natural number n, and if

- $P(1)$ is true, and
- whenever $P(n)$ is true, then $P(S(n))$ is true,
then $P(n)$ is true for every natural number $n \neq 0$.

3. Recall the binary operations + and • given by Peano arithmetic. Prove that both operations are commutative.
4. Let \mathscr{F} be a non-empty set of sets. Recall that we defined $\bigcap_{S \in \mathscr{F}} S$ by choosing a set $A \in \mathscr{F}$ and appealing to the Axiom of Specification to define $\bigcap_{S \in \mathscr{F}} S$ as a certain subset of A. Show that the set $\bigcap_{S \in \mathscr{F}} S$ does not depend on the choice of A.
5. Let X be a set and let \mathscr{F} be a non-empty set of subsets of S. Prove the following (which is one of the two de Morgan laws)

$$
X \backslash\left(\bigcap_{S \in \mathscr{F}} S\right)=\bigcup_{S \in \mathscr{F}}(X \backslash S)
$$

6. Let X and Y be two non-empty sets. For $a \in X$ and $b \in Y$, recall that the ordered pair (a, b) is the abbreviation for a certain set. Show, mentioning clearly the axioms to which you are appealing, that if $(a, b),(x, y) \in X \times Y$, then $(a, b)=(x, y)$ if and only if $a=x$ and $b=y$.
