UM 204 : INTRODUCTION TO BASIC ANALYSIS SPRING 2019 HOMEWORK 3

Instructor: GAUTAM BHARALI

Assigned: JANUARY 26, 2019

1. The following two problems establish that the operations "+" and " \cdot " defined on \mathbb{Z} extend Peano arithmetic to \mathbb{Z} .

(a) Define the function $f: \mathbb{N} \longrightarrow \mathbb{Z}$ by $f(n) := (n - \mathbb{Z} 0)$ for each $n \in \mathbb{N}$. Show that f is injective.

(b) Show that

$$f(m+n) = f(m) + f(n),$$

$$f(m \cdot n) = f(m) \cdot f(n), \quad \forall m, n \in \mathbb{N}.$$

2. Show that $m + (-n) = (m - \mathbb{Z} n)$ for each $m, n \in \mathbb{Z}$.

3. Formulate and prove a pair of statements analogous to those in Problem 1 that establish that the operations "+" and " \cdot " defined on \mathbb{Q} extend the arithmetic on \mathbb{Z} .

4. This is an easy problem meant to familiarize you with the "language" and notations used in mathematics. Let S be a non-empty set equipped with a strict order \prec . Let

$$\mathsf{diag} := \{ (x, x) \in S \times S : x \in S \}.$$

Consider the relation $\leq := \prec \cup \text{diag.}$ Express the statement $x \leq y$ in terms of x, y and \prec , where $x, y \in S$. Is \leq an order on S?

5. Let $m, n \in \mathbb{N}$. It follows that:

(i) if $m \ge n$, then there is a unique $\mu \in \mathbb{N}$ such that $m = \mu + n$.

(*ii*) if $n \ge m$, then there is a unique $\mu \in \mathbb{N}$ such that $n = \mu + m$.

Show that $(m - \mathbb{Z} n) = (\mu - \mathbb{Z} 0)$ if (i) holds true and that $(m - \mathbb{Z} n) = (0 - \mathbb{Z} \mu)$ if (ii) holds true.

6. Recall that if α is a positive cut, then we define

$$\alpha^{-1} := \{ x \in \mathbb{Q} : \exists r \in \mathbb{Q} \text{ such that } r < 1/x \text{ and } r \notin \alpha \} \cup 0^* \cup \{0\}.$$

- (a) Define α^{-1} for a negative cut.
- (b) Show that α^{-1} as defined is a cut for any $\alpha \neq 0^*$.

7. Let A be a non-empty at most countable set and suppose, for each $\alpha \in A$, we are given a set B_{α} that is at most countable. We know that $S := \bigcup_{\alpha \in A} B_{\alpha}$ is at most countable. Now suppose that A is countable, and assume that $B_{\alpha} \neq B_{\alpha'}$ for $\alpha \neq \alpha'$. Is S countable? If yes, then give a justification, else give a counterexample.

8. Let S be a non-empty set. Show that the power set of S has the same cardinality as the set of all functions from S to the set $\{0, 1\}$.

9. Let S be an uncountable set. Show that:

- (a) There exists an injective function from S into $\mathcal{P}(S)$.
- (b) S does **not** have the same cardinality as $\mathcal{P}(S)$.

Hint. The conclusions of Problem 8 above might be of help.