UM 204 : INTRODUCTION TO BASIC ANALYSIS
 SPRING 2019

 HOMEWORK 3

 HOMEWORK 3}

1. The following two problems establish that the operations "+" and "." defined on \mathbb{Z} extend Peano arithmetic to \mathbb{Z}.
(a) Define the function $f: \mathbb{N} \longrightarrow \mathbb{Z}$ by $f(n):=\left(n-_{\mathbb{Z}} 0\right)$ for each $n \in \mathbb{N}$. Show that f is injective.
(b) Show that

$$
\begin{aligned}
f(m+n) & =f(m)+f(n), \\
f(m \cdot n) & =f(m) \cdot f(n), \quad \forall m, n \in \mathbb{N} .
\end{aligned}
$$

2. Show that $m+(-n)=(m-\mathbb{Z} n)$ for each $m, n \in \mathbb{Z}$.
3. Formulate and prove a pair of statements analogous to those in Problem 1 that establish that the operations " + " and "." defined on \mathbb{Q} extend the arithmetic on \mathbb{Z}.
4. This is an easy problem meant to familiarize you with the "language" and notations used in mathematics. Let S be a non-empty set equipped with a strict order \prec. Let

$$
\operatorname{diag}:=\{(x, x) \in S \times S: x \in S\} .
$$

Consider the relation $\preceq:=\prec \cup$ diag. Express the statement $x \preceq y$ in terms of x, y and \prec, where $x, y \in S$. Is \preceq an order on S ?
5. Let $m, n \in \mathbb{N}$. It follows that:
(i) if $m \geq n$, then there is a unique $\mu \in \mathbb{N}$ such that $m=\mu+n$.
(ii) if $n \geq m$, then there is a unique $\mu \in \mathbb{N}$ such that $n=\mu+m$.

Show that $\left(m-_{\mathbb{Z}} n\right)=\left(\mu-_{\mathbb{Z}} 0\right)$ if (i) holds true and that $\left(m-_{\mathbb{Z}} n\right)=\left(0-_{\mathbb{Z}} \mu\right)$ if $(i i)$ holds true.
6. Recall that if α is a positive cut, then we define

$$
\alpha^{-1}:=\{x \in \mathbb{Q}: \exists r \in \mathbb{Q} \text { such that } r<1 / x \text { and } r \notin \alpha\} \cup 0^{*} \cup\{0\} .
$$

(a) Define α^{-1} for a negative cut.
(b) Show that α^{-1} as defined is a cut for any $\alpha \neq 0^{*}$.
7. Let A be a non-empty at most countable set and suppose, for each $\alpha \in A$, we are given a set B_{α} that is at most countable. We know that $S:=\bigcup_{\alpha \in A} B_{\alpha}$ is at most countable. Now suppose that A is countable, and assume that $B_{\alpha} \neq B_{\alpha^{\prime}}$ for $\alpha \neq \alpha^{\prime}$. Is S countable? If yes, then give a justification, else give a counterexample.
8. Let S be a non-empty set. Show that the power set of S has the same cardinality as the set of all functions from S to the set $\{0,1\}$.
9. Let S be an uncountable set. Show that:
(a) There exists an injective function from S into $\mathcal{P}(S)$.
(b) S does not have the same cardinality as $\mathcal{P}(S)$.

Hint. The conclusions of Problem 8 above might be of help.

