UM 204 : INTRODUCTION TO BASIC ANALYSIS
 SPRING 2019
 HOMEWORK 4

Instructor: GAUTAM BHARALI
Assigned: FEBRUARY 1, 2019

Note. Problem 1 has been carried over from Assignment 3. Here, given a set S, the power set of S - denoted by $\mathcal{P}(S)$ - will refer to the set of all subsets of S.

1. Let S be an uncountable set. Show that:
(a) There exists an injective function from S into $\mathcal{P}(S)$.
(b) S does not have the same cardinality as $\mathcal{P}(S)$.

Hint. The conclusions of Problem 8 from Assignment 3 might be of help.
2. Let S be a non-empty subset of \mathbb{N}. Show that S contains a unique least element (with respect to the standard order " \leq " on \mathbb{R}).
3. Prove the density property of \mathbb{Q} in \mathbb{R} using the Archimedean property of \mathbb{R}.
4. (Problem 2 from "Baby" Rudin, Chapter 2) A complex number is said to be an algebraic number if it is the root of an algebraic equation of the form:

$$
x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}=0
$$

for some $n \in \mathbb{Z}_{+}$, where a_{1}, \ldots, a_{n} are integers.
Show that the set of all algebraic integers is countable.
5. A graph $G:=G(V, E)$ is a pair of sets (V, E), where V is a non-empty, at most countable set, and $E \subset T(V)$, where

$$
T(V):=\{\{x, y\}: x, y \in V, x \neq y\}
$$

The set V is called the set of vertices of G and E is called the set of edges of G. Consider the following definitions:

- Given $x \neq y \in V$, a path joining x to y is a finite collection of edges $\left\{\left\{x_{j}, y_{j}\right\} \in E: j=\right.$ $0, \ldots, N\}$ such that $x_{0}=x, y_{j-1}=x_{j}, j=1 \ldots N$, and $y_{N}=y$. The length of a path is the number of edges contained in it.
- The graph $G(V, E)$ is said to be connected if, for each $x \neq y \in V$, there is at least one path joining x to y.
- If $G(V, E)$ is a connected graph, define the function $d: V \times V \longrightarrow[0, \infty)$ by

$$
d(x, y)= \begin{cases}0, & \text { if } x=y \\ \min \{\operatorname{length}(P): P \text { is a path joining } x \text { to } y\}, & \text { if } x \neq y\end{cases}
$$

Given any connected graph $G=G(V, E)$, is (V, d) a metric space ? If yes, then justify, else give a counterexample.
6. Let (X, d) be a metric space and $\left\{S_{\alpha}: \alpha \in A\right\}$ an arbitrary collection of subsets of X. State whether the correct relation in general should be $B \supseteq C$ or $B \subseteq C$ or $B=C$, where

$$
B=\bigcup_{\alpha \in A} \bar{S}_{\alpha} \quad \text { and } \quad C=\overline{\bigcup_{\alpha \in A} S_{\alpha}} .
$$

If $B \neq C$ in general, then provide an example showing that the relevant inclusion could be a strict inclusion.
7. Given a metric space (X, d) and a set $S \subset X$, we say that a point $x \in S$ is an interior point of S if there exists an $r>0$ such that $B(x ; r) \subseteq S$. Show that $S^{\circ}=$ the set of all interior points of S.
8. Show that the density property of \mathbb{Q} in \mathbb{R} (i.e., the property about the usual order " \leq " on \mathbb{R} mentioned in Problem 3) is equivalent to saying that \mathbb{Q} is dense in \mathbb{R} endowed with the standard metric.
9. (Problem 24 from "Baby" Rudin, Chapter 2) A metric space is called separable if it has a countable dense subset. Now suppose (X, d) is a metric space in which every infinite subset has a limit point. Show that X is separable.

