UM 204 : INTRODUCTION TO BASIC ANALYSIS SPRING 2019

HOMEWORK 4

Instructor: GAUTAM BHARALI

Assigned: FEBRUARY 1, 2019

Note. Problem 1 has been carried over from Assignment 3. Here, given a set S, the *power set* of S—denoted by $\mathcal{P}(S)$ —will refer to the set of all subsets of S.

1. Let S be an uncountable set. Show that:

- (a) There exists an injective function from S into $\mathcal{P}(S)$.
- (b) S does **not** have the same cardinality as $\mathcal{P}(S)$.

Hint. The conclusions of Problem 8 from Assignment 3 might be of help.

2. Let S be a non-empty subset of \mathbb{N} . Show that S contains a unique least element (with respect to the standard order " \leq " on \mathbb{R}).

3. Prove the density property of \mathbb{Q} in \mathbb{R} using the Archimedean property of \mathbb{R} .

4. (Problem 2 from "Baby" Rudin, Chapter 2) A complex number is said to be an *algebraic number* if it is the root of an algebraic equation of the form:

$$x^{n} + a_{1}x^{n-1} + \dots + a_{n-1}x + a_{n} = 0$$

for some $n \in \mathbb{Z}_+$, where a_1, \ldots, a_n are integers.

Show that the set of all algebraic integers is countable.

5. A graph G := G(V, E) is a pair of sets (V, E), where V is a non-empty, at most countable set, and $E \subset T(V)$, where

$$T(V) := \{\{x, y\} : x, y \in V, \ x \neq y\}.$$

The set V is called the set of vertices of G and E is called the set of edges of G. Consider the following definitions:

- Given $x \neq y \in V$, a path joining x to y is a finite collection of edges $\{\{x_j, y_j\} \in E : j = 0, \ldots, N\}$ such that $x_0 = x, y_{j-1} = x_j, j = 1 \ldots N$, and $y_N = y$. The length of a path is the number of edges contained in it.
- The graph G(V, E) is said to be *connected* if, for each $x \neq y \in V$, there is at least one path joining x to y.
- If G(V, E) is a connected graph, define the function $d: V \times V \longrightarrow [0, \infty)$ by

$$d(x,y) = \begin{cases} 0, & \text{if } x = y, \\ \min\{\operatorname{length}(P) : P \text{ is a path joining } x \text{ to } y\}, & \text{if } x \neq y. \end{cases}$$

Given any connected graph G = G(V, E), is (V, d) a metric space ? If yes, then justify, else give a counterexample.

6. Let (X, d) be a metric space and $\{S_{\alpha} : \alpha \in A\}$ an arbitrary collection of subsets of X. State whether the correct relation **in general** should be $B \supseteq C$ or $B \subseteq C$ or B = C, where

$$B = \bigcup_{\alpha \in A} \overline{S}_{\alpha}$$
 and $C = \bigcup_{\alpha \in A} S_{\alpha}$.

If $B \neq C$ in general, then provide an example showing that the relevant inclusion could be a strict inclusion.

7. Given a metric space (X, d) and a set $S \subset X$, we say that a point $x \in S$ is an *interior point of* S if there exists an r > 0 such that $B(x; r) \subseteq S$. Show that S° = the set of all interior points of S.

8. Show that the density property of \mathbb{Q} in \mathbb{R} (i.e., the property about the usual order " \leq " on \mathbb{R} mentioned in Problem 3) is equivalent to saying that \mathbb{Q} is dense in \mathbb{R} endowed with the standard metric.

9. (Problem 24 from "Baby" Rudin, Chapter 2) A metric space is called *separable* if it has a countable dense subset. Now suppose (X, d) is a metric space in which every infinite subset has a limit point. Show that X is separable.