UM 204 : INTRODUCTION TO BASIC ANALYSIS
 SPRING 2019
 HOMEWORK 5

Instructor: GAUTAM BHARALI

Assigned: FEBRUARY 8, 2019

1. Fix a real number $\alpha \in(0,1)$. Let \mathscr{C}_{α} be a subset of $[0,1]$ having a construction analogous to that of the Cantor middle-thirds set. Namely, let:
$K_{0}:=[0,1]$,
$K_{n}:=$ the union of the closed intervals obtained by removing from $K_{n-1}^{(j)}, j=1, \ldots, 2^{n-1}$, the open interval of length $\alpha \cdot$ length $\left(K_{n-1}^{(j)}\right)$ centered at the midpoint of $K_{n-1}^{(j)}, n=1,2,3, \ldots$,
where $K_{n-1}^{(1)}, \ldots, K_{n-1}^{\left(2^{n-1}\right)}$ are the closed intervals whose union gives K_{n-1}. Emulate what you have studied about the Cantor middle-thirds set to show that:
(a) \mathscr{C}_{α} is non-empty and is a perfect set.
(b) the sum of the lengths of the disjoint open intervals removed from $[0,1]$ in the construction of \mathscr{C}_{α} equals 1 .
2. Consider the sequence $\left\{a_{n}\right\}$, where

$$
a_{n}=\left(n^{2}+1\right)^{1 / 4}-\sqrt{n+1}, \quad n=1,2,3, \ldots
$$

Does this sequence converge? Give justifications for your answer, and if the sequence converges, then deduce its limit.
3. Let $\left\{a_{n}\right\}$ be a complex sequence that converges to A. Then, show that the sequence of arithmetic means

$$
\mu_{n}:=\frac{a_{1}+\cdots+a_{n}}{n}, \quad n=1,2,3, \ldots
$$

is also convergent.
Tip. It would help to guess what $\left\{\mu_{n}\right\}$ converges to!
4. Let (X, d) be a metric space and let $\left\{x_{n}\right\}$ be a sequence in X. Show that $\left\{x_{n}\right\}$ converges to a point $x_{0} \in X$ if and only if every subsequence $\left\{x_{n_{k}}\right\}_{k \in \mathbb{Z}_{+}}$converges to x_{0}.

5-7. Problems 20-22 from "Baby" Rudin, Chapter 3.
8. Fix a real number $a>0$. Recall that if $p \in \mathbb{Q}$ and if $p=m / n$ for some $m \in \mathbb{Z}$ and $n \in \mathbb{Z}_{+}$, then

$$
\begin{equation*}
a^{p}:=\left(a^{m}\right)^{1 / n} . \tag{1}
\end{equation*}
$$

Given this, if now p is an arbitrary real number, then we define

$$
\begin{equation*}
a^{p}:=\sup \left\{a^{q}: q \in \mathbb{Q} \text { and } q \leq p\right\} . \tag{2}
\end{equation*}
$$

Assuming, for the moment, that the definition (1) does not depend on the choice of the representative m / n of p, show that:
(a) for $p \in \mathbb{Q}$ the two definitions (1) and (2) of a^{p} agree.
(b) for any $x, y \in \mathbb{R}, a^{x} a^{y}=a^{x+y}$.

