UM 204 : INTRODUCTION TO BASIC ANALYSIS
 SPRING 2019
 HOMEWORK 7

Instructor: GAUTAM BHARALI

1. Let $\left\{a_{n}\right\}$ be a sequence of real numbers. Define

$$
\begin{aligned}
A_{k} & :=\inf \left\{a_{k}, a_{k+1}, a_{k+2}, \ldots\right\} \\
B_{k} & :=\sup \left\{a_{k}, a_{k+1}, a_{k+2}, \ldots\right\}
\end{aligned}
$$

Show that

$$
\liminf _{n \rightarrow \infty} a_{n}=\lim _{k \rightarrow \infty} A_{k}, \quad \text { and } \quad \limsup _{n \rightarrow \infty} a_{n}=\lim _{k \rightarrow \infty} B_{k}
$$

2. Let V be a vector space over \mathbb{R} or \mathbb{C} and let $\|\cdot\|$ be a norm on V. If we define $d(v, w):=\|v-w\|$, then show that d is a metric on V.
3. Let $\sum_{n=1}^{\infty} a_{n}$ be a convergent series with terms in \mathbb{R}. Let $\left\{b_{n}\right\} \subset \mathbb{R}$ be a monotone bounded sequence. Show that $\sum_{n=1}^{\infty} a_{n} b_{n}$ is convergent.
4. Let V be a vector space over the field \mathbb{F}, where \mathbb{F} is either \mathbb{R} or \mathbb{C}, equipped with a norm $\|\cdot\|$. Let

$$
\sum_{n=1}^{\infty} a_{n} \quad \text { and } \quad \sum_{n=1}^{\infty} b_{n}
$$

be convergent series with terms in V whose sums are A and B respectively. Let $c \in \mathbb{F}$. Show that:

- the series $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ is convergent and its sum is $(A+B)$.
- the series $\sum_{n=1}^{\infty} c a_{n}$ is convergent and its sum is $c A$.

5. Complete the following outline for a proof that the interval $[0,1)$ is uncountable. Given a number $x \in[0,1)$, let $\mathcal{I}_{0}(x):=[0,1)$ and define the intervals

$$
\mathcal{I}_{n+1}(x):= \begin{cases}{\left[\inf \mathcal{I}_{n}(x), \mu_{n}(x)\right),} & \text { if } x<\mu_{n}(x) \\ {\left[\mu_{n}(x), \sup \mathcal{I}_{n}(x)\right),} & \text { if } x \geq \mu_{n}(x)\end{cases}
$$

for $n=0,1,2, \ldots$, where $\mu_{n}(x):=\left(\inf \mathcal{I}_{n}(x)+\sup \mathcal{I}_{n}(x)\right) / 2$: i.e., the midpoint of $\mathcal{I}_{n}(x)$. Let \mathfrak{S} denote the set of all sequences in $\{0,1\}$. We now define a function $F:[0,1) \rightarrow \mathfrak{S}$ as follows: write $F(x)=\left\{s_{n}(x)\right\}$ where

$$
s_{n}(x):= \begin{cases}0 & \text { if } x<\mu_{n-1}(x) \\ 1, & \text { if } x \geq \mu_{n-1}(x)\end{cases}
$$

for $n=1,2,3, \ldots$.
(a) Show that the series

$$
\sum_{n=1}^{\infty} \frac{s_{n}(x)}{2^{n}}
$$

converges, and that its sum is x. (Remark. This problem shows that the "binary representation" of x-i.e., the expression " $0 . s_{1}(x) s_{2}(x) s_{3}(x) \ldots$ ", which is analogous to the common decimal expressions for real numbers - exists.)
(b) Show that F is not surjective (use the conclusion of (a) above).
(c) Show that $\mathfrak{S} \backslash \operatorname{range}(F)$ is countable.
(d) Use the conclusions of $(a)-(c)$ to show that $[0,1)$ is uncountable.
6. Consider the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}
$$

and let S_{n} denote its n-th partial sums, $n=1,2,3, \ldots$
(a) Show that the sequences $\left\{S 1, S_{3}, S_{5}, \ldots\right\}$ and $\left\{S_{2}, S_{4}, S_{6}, \ldots\right\}$ are monotone and bounded.
(b) Use the conclusions of (b) to deduce that the above series converges.

