UM 204 : INTRODUCTION TO BASIC ANALYSIS SPRING 2019 HOMEWORK 7

Instructor: GAUTAM BHARALI

Assigned: MARCH 2, 2019

1. Let $\{a_n\}$ be a sequence of real numbers. Define

$$A_k := \inf\{a_k, a_{k+1}, a_{k+2}, \dots\},\B_k := \sup\{a_k, a_{k+1}, a_{k+2}, \dots\}.$$

Show that

$$\liminf_{n \to \infty} a_n = \lim_{k \to \infty} A_k, \quad \text{and} \quad \limsup_{n \to \infty} a_n = \lim_{k \to \infty} B_k.$$

2. Let V be a vector space over \mathbb{R} or \mathbb{C} and let $\|\cdot\|$ be a norm on V. If we define $d(v, w) := \|v - w\|$, then show that d is a metric on V.

3. Let $\sum_{n=1}^{\infty} a_n$ be a convergent series with terms in \mathbb{R} . Let $\{b_n\} \subset \mathbb{R}$ be a monotone bounded sequence. Show that $\sum_{n=1}^{\infty} a_n b_n$ is convergent.

4. Let V be a vector space over the field \mathbb{F} , where \mathbb{F} is either \mathbb{R} or \mathbb{C} , equipped with a norm $\|\cdot\|$. Let

$$\sum_{n=1}^{\infty} a_n$$
 and $\sum_{n=1}^{\infty} b_n$

be convergent series with terms in V whose sums are A and B respectively. Let $c \in \mathbb{F}$. Show that:

- the series $\sum_{n=1}^{\infty} (a_n + b_n)$ is convergent and its sum is (A + B).
- the series $\sum_{n=1}^{\infty} ca_n$ is convergent and its sum is cA.

5. Complete the following outline for a proof that the interval [0, 1) is uncountable. Given a number $x \in [0, 1)$, let $\mathcal{I}_0(x) := [0, 1)$ and define the intervals

$$\mathcal{I}_{n+1}(x) := \begin{cases} \left[\inf \mathcal{I}_n(x), \mu_n(x) \right), & \text{if } x < \mu_n(x), \\ \left[\mu_n(x), \sup \mathcal{I}_n(x) \right), & \text{if } x \ge \mu_n(x), \end{cases}$$

for n = 0, 1, 2, ..., where $\mu_n(x) := (\inf \mathcal{I}_n(x) + \sup \mathcal{I}_n(x))/2$: i.e., the midpoint of $\mathcal{I}_n(x)$. Let \mathfrak{S} denote the set of all sequences in $\{0, 1\}$. We now define a function $F : [0, 1) \to \mathfrak{S}$ as follows: write $F(x) = \{s_n(x)\}$ where

$$s_n(x) := \begin{cases} 0 & \text{if } x < \mu_{n-1}(x), \\ 1, & \text{if } x \ge \mu_{n-1}(x), \end{cases}$$

for $n = 1, 2, 3, \ldots$

(a) Show that the series

$$\sum_{n=1}^{\infty} \frac{s_n(x)}{2^n}$$

converges, and that its sum is x. (**Remark.** This problem shows that the "binary representation" of x—i.e., the expression " $0.s_1(x) s_2(x) s_3(x) \ldots$ ", which is analogous to the common decimal expressions for real numbers—exists.)

- (b) Show that F is **not** surjective (use the conclusion of (a) above).
- (c) Show that $\mathfrak{S} \setminus \mathsf{range}(F)$ is countable.
- (d) Use the conclusions of (a)-(c) to show that [0,1) is uncountable.
- 6. Consider the series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n},$$

and let S_n denote its *n*-th partial sums, n = 1, 2, 3, ...

- (a) Show that the sequences $\{S_1, S_3, S_5, ...\}$ and $\{S_2, S_4, S_6, ...\}$ are monotone and bounded.
- (b) Use the conclusions of (b) to deduce that the above series converges.