UM 204 : INTRODUCTION TO BASIC ANALYSIS SPRING 2019 HOMEWORK 9

Instructor: GAUTAM BHARALI

Assigned: MARCH 16, 2019

The following is the **corrected** version of a problem assigned in Homework 6. **1.** Show that if S is a non-empty subset of \mathbb{R} that is bounded above, then $\sup S$ belongs to \overline{S} .

2. Let X be a metric space and let $S \subseteq X$. Show that S is connected if and only if there do **not** exist two non-empty subsets $A, B \subseteq S$ such that $S = A \cup B$ and A and B are separated (in X).

3. Let S_1 and S_2 be non-empty sets and let $f: S_1 \longrightarrow S_2$. Let \mathscr{A} be a non-empty subset of $\mathcal{P}(S_1)$ and let \mathscr{B} be a non-empty subset of $\mathcal{P}(S_2)$. Prove the following:

 $f(\bigcup_{A\in\mathscr{A}} A) = \bigcup_{A\in\mathscr{A}} f(A),$ $f(\cap_{A\in\mathscr{A}} A) \subseteq \cap_{A\in\mathscr{A}} f(A),$ $f^{-1}(\bigcup_{B\in\mathscr{B}} B) = \bigcup_{B\in\mathscr{B}} f^{-1}(B),$ $f^{-1}(\cap_{B\in\mathscr{B}} B) = \cap_{B\in\mathscr{B}} f^{-1}(B).$

4. Let $I \subseteq \mathbb{R}$ be an interval and let $f : I \longrightarrow \mathbb{R}$ be a continuous function. Show that f is invertible if and only if it is either strictly increasing or strictly decreasing.

5. Let X and Y be metric spaces and let $f: X \longrightarrow Y$ be a continuous invertible function. If X is compact, then show that f^{-1} is continuous on $\operatorname{range}(f)$.

6. Give a proof of Brouwer's Fixed Point Theorem in the n = 1 case.

7-8. Problems 20 and 22 from "Baby" Rudin, Chapter 4.

9. Consider the result:

Theorem. Let X and Y be metric spaces, and let $S \subsetneq X$ be dense subset. Let $f : S \longrightarrow Y$ be a uniformly continuous function. Suppose Y is complete. Then, there exists a continuous function $\tilde{f}: X \longrightarrow Y$ such that $\tilde{f}|_{S} = f$.

that was *partially* proved in class. Consider the function \tilde{f} constructed in that proof—which must be shown to have the properties stated above. Fix $x \in (X \setminus S)$, and let $\{x_n\}$ be a sequence in $X \setminus \{x\}$ that converges to x. Complete the following outline to prove that \tilde{f} is continuous:

(a) Explain why it suffices to only consider sequences $\{x_n\}$ such that

$$\operatorname{range}(\{x_n\}) \bigcap (X \setminus S) \text{ is an infinite set.}$$
(1)

(b) Consider a sequence $\{x_n\}$ with the property (1). Construct an auxiliary sequence $\{y_n\} \subset S$ such that for each n for which $x_n \notin S$, y_n is "sufficiently close" to x_n —in an appropriate sense—and converges to x in such a way that you can use its behaviour, plus uniform continuity, to infer that $\{\tilde{f}(x_n)\}$ is convergent.

- (c) Deduce that $\{\widetilde{f}(x_n)\}$ converges to $\widetilde{f}(x)$.
- (d) Now, complete the argument showing that \widetilde{f} is continuous.

10. Give an example showing that, with X, Y and $S \subseteq X$ exactly as in the statement of the theorem in Problem 8 and $f: S \longrightarrow Y$ a continuous function, the theorem is **false** if f is not assumed to be **uniformly** continuous.