UM 204: INTRODUCTION TO BASIC ANALYSIS SPRING 2019

QUIZ 1

1. Let $m, n \in \mathbb{N}$. It follows that:
(i) if $m \geq n$, then there is a unique $\mu \in \mathbb{N}$ such that $m=\mu+n$.
(ii) if $n \geq m$, then there is a unique $\mu \in \mathbb{N}$ such that $n=\mu+m$.

Show that $\left(m-_{\mathbb{Z}} n\right)=\left(\mu-_{\mathbb{Z}} 0\right)$ if (i) holds true and that $\left(m-_{\mathbb{Z}} n\right)=\left(0-_{\mathbb{Z}} \mu\right)$ if $(i i)$ holds true.
Note. We have not proved in class the uniqueness of the μ appearing in (i) and (ii). However, for this quiz, you are not required to establish uniqueness of μ.

Solution. This problem just requires understanding the definition of the equivalence relation $\sim_{\mathbb{Z}}$ on $\mathbb{N} \times \mathbb{N}$. We need to show that
(i) $\Rightarrow\left(m-_{\mathbb{Z}} n\right)$ and $\left(\mu-_{\mathbb{Z}} 0\right)$ denote the same equivalence class under $\sim_{\mathbb{Z}}$, and
(ii) $\Rightarrow(m-\mathbb{Z} n)$ and $\left(0-_{\mathbb{Z}} \mu\right)$ denote the same equivalence class under $\sim_{\mathbb{Z}}$.

To this end, we assume (i). Then:

$$
\begin{aligned}
m=\mu+n & \Rightarrow m+0=n+\mu \\
& \Rightarrow(m, n) \sim_{\mathbb{Z}}(\mu, 0) \quad\left[\text { by definition of } \sim_{\mathbb{Z}}\right] .
\end{aligned}
$$

This establishes (1)
Next, we assume (ii). Then:

$$
\begin{aligned}
n=\mu+m & \Rightarrow 0+n=\mu+m \\
& \Rightarrow(0, \mu) \sim_{\mathbb{Z}}(m, n) \quad\left[\text { by definition of } \sim_{\mathbb{Z}}\right] .
\end{aligned}
$$

This establishes (2).

