UM 204: INTRODUCTION TO BASIC ANALYSIS SPRING 2019

QUIZ 1

1. Let $m, n \in \mathbb{N}$. It follows that:

- (i) if $m \ge n$, then there is a unique $\mu \in \mathbb{N}$ such that $m = \mu + n$.
- (*ii*) if $n \ge m$, then there is a unique $\mu \in \mathbb{N}$ such that $n = \mu + m$.

Show that $(m - \mathbb{Z} n) = (\mu - \mathbb{Z} 0)$ if (i) holds true and that $(m - \mathbb{Z} n) = (0 - \mathbb{Z} \mu)$ if (ii) holds true. **Note.** We have not proved in class the uniqueness of the μ appearing in (i) and (ii). However, for this quiz, you are **not required** to establish uniqueness of μ .

Solution. This problem just requires understanding the definition of the equivalence relation $\sim_{\mathbb{Z}}$ on $\mathbb{N} \times \mathbb{N}$. We need to show that

 $(i) \Rightarrow (m - \mathbb{Z} n)$ and $(\mu - \mathbb{Z} 0)$ denote the same equivalence class under $\sim_{\mathbb{Z}}$, and (1)

 $(ii) \Rightarrow (m - \mathbb{Z} n) \text{ and } (0 - \mathbb{Z} \mu) \text{ denote the same equivalence class under } \sim_{\mathbb{Z}}.$ (2)

To this end, we assume (i). Then:

$$m = \mu + n \implies m + 0 = n + \mu$$

$$\implies (m, n) \sim_{\mathbb{Z}} (\mu, 0) \qquad \text{[by definition of } \sim_{\mathbb{Z}}\text{]}.$$

This establishes (1)

Next, we assume (ii). Then:

n

$$= \mu + m \implies 0 + n = \mu + m$$

$$\implies (0, \mu) \sim_{\mathbb{Z}} (m, n) \qquad \text{[by definition of $\sim_{\mathbb{Z}}$]}.$$

This establishes (2).