UM 204: INTRODUCTION TO BASIC ANALYSIS SPRING 2019

QUIZ 2

FEBRUARY 8, 2019

1. Let (X, d) be a metric space and $\{S_{\alpha} : \alpha \in A\}$ an arbitrary collection of subsets of X. State whether the correct relation **in general** should be $B \supseteq C$ or $B \subseteq C$ or B = C, where

$$B = \bigcup_{\alpha \in A} \overline{S}_{\alpha} \quad \text{and} \quad C = \overline{\bigcup_{\alpha \in A} S_{\alpha}}$$

If $B \neq C$ in general, then provide an example showing that the relevant inclusion could be a strict inclusion.

Solution. Let $x \in B$. Then, there exists an α^* (which depends on x) such that $x \in \overline{S}_{\alpha^*}$. Then, it follows from the theorem characterizing the closure of any set in a metric space that either $x \in S_{\alpha^*}$ or is a limit point of S_{α^*} . In the first case

$$x \in \bigcup_{\alpha \in A} S_{\alpha} \subseteq C.$$

In the second case, given any r > 0

$$B(x;r) \setminus \{x\} \cap S_{\alpha^*} \neq \emptyset$$

$$\Rightarrow B(x;r) \setminus \{x\} \cap \left(\bigcup_{\alpha \in A} S_{\alpha}\right) \neq \emptyset$$

which implies that $x \in C$. In either case, thus, $x \in C$. Since $x \in B$ was arbitrary, we have established that $B \subseteq C$.

The opposite inclusion is **false**. Consider, for example, (X, d) to be \mathbb{R} with the standard metric, and consider the collection

$$\{[1/n, 1 - 1/n] : n \in \mathbb{Z}_+\}.$$

I.e., $S_n = [1/n, 1 - 1/n] = \overline{S}_n$. We make the following

Claim. B = (0, 1)

If $x \in B$ then there exists some $n^* \in \mathbb{Z}_+$ such that $1/n^* \leq x \leq 1 - 1/n^*$, whence 0 < x < 1. If $x \in (0,1)$, then we can find an integer $n_1 \in \mathbb{Z}_+$ such that $1/n_1 < x$ (by an argument given in class using the Archimedean property of \mathbb{R}). Also, we can find an integer $n_2 \in \mathbb{Z}_+$ such that $x < 1 - 1/n_2$ (by the above-mentioned argument applied to 1 - x). Write $n_0 := \max(n_1, n_2)$. Then $x \in [1/n_0, 1 - 1/n_0]$, and hence $x \in B$.

Since $B = \bigcup_{n \in \mathbb{Z}_+} S_n$ in the present example, and B is not closed, $B \subsetneq C$.