UM 204:INTRODUCTION TO BASIC ANALYSIS SPRING 2019

1. Let $\left\{a_{n}\right\}$ be a bounded sequence of real numbers. Define

$$
B_{k}:=\sup \left\{a_{k}, a_{k+1}, a_{k+2}, \ldots\right\} .
$$

Show that

$$
\limsup _{n \rightarrow \infty} a_{n}=\lim _{k \rightarrow \infty} B_{k} .
$$

Remark. The hypothesis of $\left\{a_{n}\right\}$ being bounded is unnecessary. It has only been provided to reduce the cases one would need to comment upon in general.

Solution. Write $L:=\lim \sup _{n \rightarrow \infty} a_{n}$. Since, by definition

$$
\limsup _{n \rightarrow \infty} a_{n} \in\{-\infty,+\infty\} \Longleftrightarrow \text { range }\left[\left\{a_{n}\right\}\right] \text { is unbounded, }
$$

L must, by hypothesis, be finite. Thus, given $\varepsilon>0$, there exists a positive integer N_{1} such that

$$
\begin{align*}
& a_{n}<L+(\varepsilon / 2) \quad \forall n \geq N_{1} \\
\Rightarrow & B_{n}<L+\varepsilon \quad \forall n \geq N_{1} . \tag{1}
\end{align*}
$$

We know that L is itself a subsequential limit: i.e., there is a sequence $\left\{a_{n_{j}}\right\}_{j \in \mathbb{Z}_{+}}$such that $\lim _{j \rightarrow \infty} a_{n_{j}}=L$. Thus, there is a positive integer J such that

$$
L-\varepsilon<a_{n_{j}}<L+\varepsilon \quad \forall j \geq J
$$

Write $N_{2}:=n_{J}$. The above inequality implies that

$$
\begin{equation*}
B_{n}>L_{\varepsilon} \quad \forall n \geq n_{j}=N_{2} . \tag{2}
\end{equation*}
$$

Write $N:=\max \left(N_{1}, N_{2}\right)$. From (1) and (2), we get

$$
\left|B_{n}-L\right|<\varepsilon \quad \forall n \geq L .
$$

Since $\varepsilon>0$ was arbitrarily chosen, we conclude that $\lim _{n \rightarrow \infty} B_{n}=L$.

