UM 204:INTRODUCTION TO BASIC ANALYSIS SPRING 2019

QUIZ 4
MARCH 15, 2019

1. Let $n \geq 2, n \in \mathbb{Z}_{+}$. Show that $f(x)=x^{1 / n}, x \in[0,+\infty)$, is continuous on $[0,+\infty)$.

Remark. This forms one of the parts to solving Problem 5 from the most recent homework assignment.

Solution. We must first establish the following:
Claim: f is strictly increasing.
Define $\varphi_{k}:[0,+\infty) \rightarrow \mathbb{R}$ by $\varphi_{k}(x):=x^{k}$. Assume that φ_{k} is strictly increasing for some $k \in \mathbb{Z}_{+}$. Then for any $x, y \in[0,+\infty)$:

$$
\begin{aligned}
x<y & \Rightarrow x^{k}<y^{k} & & \text { [by assumption] } \\
& \Rightarrow x^{k} y<y^{k} y & & {[\text { since } y>0] } \\
& \Rightarrow x^{k} x \leq x^{k} y<y^{k} y . & &
\end{aligned}
$$

The last two inequalities are immediate consequences of \mathbb{R} being an ordered field. The above calculation shows that if φ_{k} is strictly increasing, then so is φ_{k+1}. Since $\varphi_{1}=\mathrm{id}_{[0,+\infty)}$ is strictly increasing, it follows by mathematical induction that φ_{n} is strictly increasing. Now, suppose there exist $x, y \in[0,+\infty)$ such that

$$
x<y \quad \text { and } \quad f(x) \geq f(y) .
$$

Then, as φ_{n} is strictly increasing, we get $x=\varphi_{n}(f(x)) \geq \varphi_{n}(f(y))=y$, which is a contradiction. Thus f is strictly increasing.

Fix a point $a \in[0,+\infty)$ and let $\varepsilon>0$.
If $a=0$, then take $\delta=\varepsilon^{n}$. By the above Claim:

$$
\begin{equation*}
0 \leq(x-a)=|x|<\delta \Rightarrow 0 \leq f(x)=|f(x)-f(a)|<\varepsilon . \tag{1}
\end{equation*}
$$

If $a>0$, write $\varepsilon^{*}:=\min \left\{a^{1 / n}, \varepsilon\right\}$ and take

$$
\delta:=\min \left\{\left(a^{1 / n}+\varepsilon^{*}\right)^{n}-a, a-\left(a^{1 / n}-\varepsilon^{*}\right)^{n}\right\} .
$$

Then, by the above Claim:

$$
\begin{align*}
|x-a|<\delta & \Rightarrow\left(a^{1 / n}-\varepsilon^{*}\right)^{n}<x<\left(a^{1 / n}+\varepsilon^{*}\right)^{n} \\
& \Rightarrow-\varepsilon^{*}<f(x)-f(a)<\varepsilon^{*} \\
& \Rightarrow|f(x)-f(a)|<\varepsilon^{*} \leq \varepsilon . \tag{2}
\end{align*}
$$

Since $\varepsilon>0$ was chosen arbitrarily, (1) and (2) imply that f is continuous at a. Since a was chosen arbitrarily, it follows that f is continuous.

