UM 204: INTRODUCTION TO BASIC ANALYSIS SPRING 2019

$\mathbf{QUIZ} \ \mathbf{4}$

1. Let $n \ge 2$, $n \in \mathbb{Z}_+$. Show that $f(x) = x^{1/n}$, $x \in [0, +\infty)$, is continuous on $[0, +\infty)$.

Remark. This forms one of the **parts** to solving Problem 5 from the most recent homework assignment.

Solution. We must first establish the following:

CLAIM: f is strictly increasing.

Define $\varphi_k : [0, +\infty) \to \mathbb{R}$ by $\varphi_k(x) := x^k$. Assume that φ_k is strictly increasing for some $k \in \mathbb{Z}_+$. Then for any $x, y \in [0, +\infty)$:

$$\begin{aligned} x < y \Rightarrow x^{k} < y^{k} & \text{[by assumption]} \\ \Rightarrow x^{k}y < y^{k}y & \text{[since } y > 0] \\ \Rightarrow x^{k}x \le x^{k}y < y^{k}y. \end{aligned}$$

The last two inequalities are immediate consequences of \mathbb{R} being an ordered field. The above calculation shows that if φ_k is strictly increasing, then so is φ_{k+1} . Since $\varphi_1 = id_{[0,+\infty)}$ is strictly increasing, it follows by mathematical induction that φ_n is strictly increasing. Now, suppose there exist $x, y \in [0, +\infty)$ such that

$$x < y$$
 and $f(x) \ge f(y)$.

Then, as φ_n is strictly increasing, we get $x = \varphi_n(f(x)) \ge \varphi_n(f(y)) = y$, which is a contradiction. Thus f is strictly increasing.

Fix a point $a \in [0, +\infty)$ and let $\varepsilon > 0$.

If a = 0, then take $\delta = \varepsilon^n$. By the above CLAIM:

$$0 \le (x-a) = |x| < \delta \Rightarrow 0 \le f(x) = |f(x) - f(a)| < \varepsilon.$$
(1)

If a > 0, write $\varepsilon^* := \min\{a^{1/n}, \varepsilon\}$ and take

$$\delta := \min\{(a^{1/n} + \varepsilon^*)^n - a, \ a - (a^{1/n} - \varepsilon^*)^n\}.$$

Then, by the above CLAIM:

$$|x - a| < \delta \implies (a^{1/n} - \varepsilon^*)^n < x < (a^{1/n} + \varepsilon^*)^n$$

$$\implies -\varepsilon^* < f(x) - f(a) < \varepsilon^*$$

$$\implies |f(x) - f(a)| < \varepsilon^* \le \varepsilon.$$
 (2)

Since $\varepsilon > 0$ was chosen arbitrarily, (1) and (2) imply that f is continuous at a. Since a was chosen arbitrarily, it follows that f is continuous.