UM 204: INTRODUCTION TO BASIC ANALYSIS SPRING 2019

QUIZ 5

1. Let X and Y be metric spaces and let $f: X \longrightarrow Y$ be a continuous invertible (i.e., injective) function. If X is compact, then show that $f^{-1}: \mathsf{range}(f) \longrightarrow X$ is continuous.

Solution. Since $(f^{-1})^{-1}(S) = S$ for any $S \subseteq X$, it suffices to show the following:

(*) For any open set $U \subset X$, f(U) is open relative to range(f).

Therefore, consider an arbitrary open set $U \subseteq X$. Since $X \setminus U$ is closed and X is compact, so is $X \setminus U$. Thus, by the continuity of f,

$$f(X \setminus U) = f(X) \setminus f(U) \text{ is compact}$$
(1)

 $\Rightarrow f(X) \setminus f(U) \text{ is a closed subset of } Y.$ (2)

The equality in (1) is a consequence of f being injective.

Let us write $E := f(X) \setminus f(U)$. Observe that by definition:

$$\mathsf{range}(f) \cap (Y \setminus E) = \mathsf{range}(f) \cap \{y \in Y : y \in f(U) \text{ or } y \notin f(X)\} \\ = f(U).$$

In view of (2) and the last identity, we see that f(U) is the intersection of some open subset of Y with range(f). Hence, f(U) is open relative to range(f). This establishes the statement (*), and hence the result.