UM 204:INTRODUCTION TO BASIC ANALYSIS SPRING 2019

1. Let X and Y be metric spaces and let $f: X \longrightarrow Y$ be a continuous invertible (i.e., injective) function. If X is compact, then show that $f^{-1}:$ range $(f) \longrightarrow X$ is continuous.

Solution. Since $\left(f^{-1}\right)^{-1}(S)=S$ for any $S \subseteq X$, it suffices to show the following:
(*) For any open set $U \subset X, f(U)$ is open relative to range (f).
Therefore, consider an arbitrary open set $U \subseteq X$. Since $X \backslash U$ is closed and X is compact, so is $X \backslash U$. Thus, by the continuity of f,

$$
\begin{align*}
f(X \backslash U) & =f(X) \backslash f(U) \text { is compact } \tag{1}\\
& \Rightarrow f(X) \backslash f(U) \text { is a closed subset of } Y . \tag{2}
\end{align*}
$$

The equality in (1) is a consequence of f being injective.
Let us write $E:=f(X) \backslash f(U)$. Observe that by definition:

$$
\begin{aligned}
\operatorname{range}(f) \cap(Y \backslash E) & =\operatorname{range}(f) \cap\{y \in Y: y \in f(U) \text { or } y \notin f(X)\} \\
& =f(U) .
\end{aligned}
$$

In view of (2) and the last identity, we see that $f(U)$ is the intersection of some open subset of Y with range (f). Hence, $f(U)$ is open relative to range (f). This establishes the statement (*), and hence the result.

