UM 204:INTRODUCTION TO BASIC ANALYSIS SPRING 2019

1. Define the function $f: \mathbb{R} \longrightarrow\{0,1\}$ as follows:

$$
f(x):= \begin{cases}1, & \text { if } x \in \mathbb{Q} \\ 0, & \text { if } x \notin \mathbb{Q}\end{cases}
$$

Show that $\left.f\right|_{[a, b]} \notin \mathscr{R}([a, b])$ for any $a<b$.
Solution. We first establish two claims:
Claim 1: Given any $\alpha<\beta \in \mathbb{R},[\alpha, \beta] \cap \mathbb{Q} \neq \varnothing$.
Suppose this is false. Then there exist real numbers $\alpha<\beta$ such that $[\alpha, \beta] \cap \mathbb{Q}=\varnothing$. Then $\mathbb{Q} \subseteq(-\infty, \alpha) \cup(\beta,+\infty)$. The density of \mathbb{Q} in \mathbb{R} implies that $\mathbb{R} \subseteq(-\infty, \alpha] \cup[\beta,+\infty)$, which is impossible. Hence the claim.
Claim 2: Given any $\alpha<\beta \in \mathbb{R},[\alpha, \beta] \cap(\mathbb{R} \backslash \mathbb{Q}) \neq \varnothing$.
Clearly, $[\alpha, \beta]$ is in one-to-one correspondence with $[0,1]$. We have shown that $[0,1]$ is uncountable, whence $[\alpha, \beta]$ is uncountable. Now

$$
[\alpha, \beta] \cap(\mathbb{R} \backslash \mathbb{Q})=[\alpha, \beta] \backslash \mathbb{Q} .
$$

Since \mathbb{Q} is countable, $[\alpha, \beta] \backslash \mathbb{Q}$ is uncountable. Thus, $[\alpha, \beta] \cap(\mathbb{R} \backslash \mathbb{Q})$ is uncountable, and hence non-empty.

Now fix $a<b$, and consider a partition

$$
\mathbb{P}: \quad a=x_{0}<x_{1}<x_{2}<\cdots<x_{N}=b .
$$

By Claim $1,\left[x_{j-1}, x_{j}\right] \cap \mathbb{Q} \neq \varnothing$ for $j=1, \ldots N$. Hence, by definition of f :

$$
\sup \left\{f(x): x \in\left[x_{j-1}, x_{j}\right]\right\}=1 \quad \forall j=1, \ldots N .
$$

Similarly, by Claim 2,

$$
\inf \left\{f(x): x \in\left[x_{j-1}, x_{j}\right]\right\}=0 \quad \forall j=1, \ldots N .
$$

From the last two equations, we get

$$
L(\mathbb{P}, f)=0 \quad \text { and } \quad U(\mathbb{P}, f)=1
$$

Since the partition \mathbb{P} was arbitrarily chosen, it follows that the upper and lower integrals of f on $[a, b]$ do not agree. Hence, $\left.f\right|_{[a, b]} \notin \mathscr{R}([a, b])$.

