# UMA 101: ANALYSIS \& LINEAR ALGEBRA-I AUTUMN 2023 

HINTS/SKETCH OF SOLUTIONS TO HOMEWORK 10 PROBLEMS

## Instructor: GAUTAM BHARALI

Assigned: OCTOBER 25, 2023

1. Consider the following:

Theorem. Let $I \subseteq \mathbb{R}$ be a non-empty open interval, $f: I \rightarrow \mathbb{R}$ a one-one function, and let $a \in I$. Suppose $f$ is continuous and that $f$ is differentiable at $a$. Moreover, assume that $f^{\prime}(a) \neq 0$. Then:
(i) $f(I)$ is an open interval.
(ii) $f^{-1}$ is differentiable at $f(a)$ and

$$
\left(f^{-1}\right)^{\prime}(f(a))=1 / f^{\prime}(a)
$$

Keeping in mind the discussion in class, give a proof - using the sequential definition of limits of functions - of part (ii).
2. Let $I \subseteq \mathbb{R}$ be a non-empty open interval and let $f: I \rightarrow \mathbb{R}$ be a one-one function. Assume that $f$ is bounded and continuous on $I$. Show that $f(I)$ is an open interval.
Remark. The above is a proof, for a special case, of part $(i)$ of Problem 1. The general result is somewhat annoying to prove using only the techniques presented in this course.

Sketch of solution: Since $f$ is a bounded function, by definition

$$
f(I):=\{f(x) \in \mathbb{R}: x \in I\}
$$

is bounded above and bounded below. Thus, by the least upper bound property of $\mathbb{R}, \beta:=\sup f(I)$ exists. We have seen that $\mathbb{R}$ also has the greatest lower bound property. Thus, $\alpha:=\inf f(I)$ exists. We will show that $f(I)=(\alpha, \beta)$.

At this stage we will need a result presented in class which states that $f$, under the given hypothesis, is either strictly increasing or strictly decreasing. WLOG, we can assume that $f$ is strictly increasing.

Let $y \in(\alpha, \beta)$. Since $\alpha<y<\beta, y$ is neither an upper bound nor a lower bound of $f(I)$, there exist $p_{1}<y$ such that $p_{1} \in f(I)$ and $p_{2}>y$ such that $p_{2} \in f(I)$. But $p_{1}, p_{2} \in f(I)$ means that $p_{1}$ and $p_{2}$ are two distinct values of $f$. As $p_{1}<y<p_{2}$, by the intermediate-value theorem (recall that $f$ is continuous),

$$
\exists c \in\left(f^{-1}\left(p_{1}\right), f^{-1}\left(p_{2}\right)\right) \text { such that } y=f(c) .
$$

Thus $y \in f(I)$. But since $y$ was chosen arbitrarily, we conclude that

$$
\begin{equation*}
(\alpha, \beta) \subseteq f(I) \tag{1}
\end{equation*}
$$

Now let $y \in f(I)$. Then, since $\alpha$ (respectively, $\beta$ ) is a lower (respectively, upper) bound of $f(I)$, $\alpha \leq y \leq \beta$. We first show that $y \neq \beta$. To see this, assume $y=\beta$. Then, as $y \in f(I), \exists p \in I$ such
that $f(p)=y=\beta$. Since $I$ is an open interval, there exists $\epsilon>0$ such that $(p-\epsilon, p+\epsilon) \subseteq I$. Then $(p+\epsilon / 2) \in I$ and we have

$$
f(I) \ni f(p+\epsilon / 2)>f(p)=\beta \quad[\text { as } f \text { is strictly increasing }]
$$

But this contradicts the fact that $\beta=\sup f(I)$. Hence $y<\beta$.
Give a similar argument showing that $y>\alpha$. The last two assertions imply that $y \in(\alpha, \beta)$. But since $y$ was chosen arbitrarily from $f(I)$,

$$
\begin{equation*}
f(I) \subseteq(\alpha, \beta) . \tag{2}
\end{equation*}
$$

From (1) and (2), the result follows.
3. This problem recapitulates the discussion in class - leading to the computation of the derivative of $\sin ^{-1}$ - for the function $\cos ^{-1}$.
a) Write down all the closed intervals $I \nsubseteq \mathbb{R}$ of length $\pi$ such that $\left.\cos \right|_{I}$ is invertible.
b) Define the function $\cos ^{-1}$ as follows:

$$
\cos ^{-1}:=\text { the inverse of the function }\left.\cos \right|_{[0, \pi]} .
$$

(This function is also denoted by arccos.) Show that $\cos ^{-1}$ is differentiable on $(-1,1)$ and that

$$
\left(\cos ^{-1}\right)^{\prime}(x)=-\frac{1}{\sqrt{1-x^{2}}} \quad \forall x \in(-1,1)
$$

4. Fix $n \in \mathbb{N}-\{0,1\}$ and define $g_{n}(y):=y^{1 / n}$ for each $y \in[0, \infty)$. Using the fact that $g_{n}=$ $\left(\left.f_{n}\right|_{[0, \infty)}\right)^{-1}$ —where $f_{n}(x)=x^{n}$ for each $x \in \mathbb{R}$ —show that $g_{n}$ is differentiable on $(0, \infty)$ and compute $\left(g_{n}\right)^{\prime}$.
Sketch of solution:Fix $y \in(0, \infty)$. Since $g_{n}=\left(f_{n} \mid[0, \infty)\right)^{-1}$, and since for any $x \in(0, \infty), f_{n}^{\prime}(x)=$ $n x^{n-1}>0$,

$$
\begin{equation*}
g_{n}^{\prime}\left(f_{n}(x)\right)=\frac{1}{n x^{n-1}} \quad \forall x \in(0, \infty) \tag{3}
\end{equation*}
$$

Since any $y \in(0, \infty)$ is of the form $f_{n}(x), x \in(0, \infty)$, because clearly

$$
y=f_{n}\left(y^{1 / n}\right),
$$

by (3) we have:

$$
\left.g_{n}^{\prime}(y)=\frac{1}{n\left(y^{1 / n}\right)^{n-1}}\right)=\frac{1}{n y^{(n-1) / n}}=\frac{y^{(1 / n)-1}}{n} \quad \forall y \in(0, \infty) .
$$

5. Let $a_{1}, a_{2}, \ldots, a_{n}$ be $n$ distinct real numbers. Let

$$
f(x)=\sum_{j=1}^{n}\left(x-a_{j}\right)^{2}, \quad x \in \mathbb{R}
$$

Show that the least value of $f$ is obtained at the arithmetic mean of $a_{1}, \ldots, a_{n}$.
6. Let $a<b$ be real numbers and let $s, t:[a, b] \rightarrow \mathbb{R}$ be two simple functions. Go through the following outline to show that $s+t$ is also a simple function.
(a) Let

$$
\begin{aligned}
& \mathcal{P}_{1}: a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b, \\
& \mathcal{P}_{2}: a=y_{0}<y_{1}<y_{2}<\cdots<y_{m}=b
\end{aligned}
$$

be partitions that determine $s$ and $t$, respectively. Consider the partition $\mathcal{P}_{1} \cup \mathcal{P}_{2}$ (which is called the common refinement of $\mathcal{P}_{1}$ and $\mathcal{P}_{1}$ ), and denote it as

$$
\mathcal{P}_{1} \cup \mathcal{P}_{2}: a=z_{0}<z_{1}<z_{2}<\cdots<z_{N}=b .
$$

Fix an index $l$ such that $1 \leq l \leq N$. You may assume without proof (the proof is annoying, involving the consideration of several cases) that there exist unique integers $i(l), j(l), 1 \leq$ $i(l) \leq n$ and $1 \leq j(l) \leq m$ such that

$$
\left(z_{l-1}, z_{l}\right)=\left(x_{i(l)-1}, x_{i(l)}\right) \cap\left(y_{j(l)-1}, y_{j(l)}\right) .
$$

(b) Let $\sigma_{1}, \ldots, \sigma_{n}$ be the values taken by $s$ on the open sub-intervals given by $\mathcal{P}_{1}$ and $\tau_{1}, \ldots \tau_{m}$ be the values taken by $t$ on the open sub-intervals given by $\mathcal{P}_{2}$. Use Part ( $a$ ) and the latter information to show that $s+t$ is also a step function.

Sketch of solution: The solution to this problem is much simpler than the material building up to it would suggest! We consider the partition $\mathcal{P}_{1} \bigcup \mathcal{P}_{2}$ and let $z_{l}, l=0, \ldots, N$, be as given by part (a). As

$$
\left(z_{l-1}, z_{l}\right)=\left(x_{i(l)-1}, x_{i(l)}\right) \cap\left(y_{j(l)-1}, y_{j(l)}\right),
$$

we have from the data given:

$$
\begin{aligned}
& s(x)=\sigma_{i(l)} \forall x \in\left(z_{l-1}, z_{l}\right), \\
& t(x)=\tau_{j(l)} \forall x \in\left(z_{l-1}, z_{l}\right) .
\end{aligned}
$$

Thus:

$$
(s+t)(x)=\sigma_{i(l)}+\tau_{j(l)} \forall x \in\left(z_{l-1}, z_{l}\right) \text { and } l=1, \ldots, N,
$$

which exactly fits the definition of a simple function.
7. Solve parts $(c)-(f)$ of Problem 1 of Section 1.15 of Apostol.

Sketch of solution: The key to solving these problems is to establish that each of the functions is a step function. Then $\int_{a}^{b} f(x) d x$ in each case is given by the formula for the integral.

We will present a solution of just one of the problems: Part $1(c)$. Note:

$$
[x]=\left\{\begin{array}{ll}
-1, & \text { if }-1 \leq x \leq 0, \\
0, & \text { if } 0 \leq x \leq 1, \\
1, & \text { if } 1 \leq x \leq 2, \\
2, & \text { if } 2 \leq x \leq 3,
\end{array} \quad[x+1 / 2]= \begin{cases}-1, & \text { if }-1 \leq x \leq-\frac{1}{2} \\
0, & \text { if }-\frac{1}{2} \leq x \leq \frac{1}{2} \\
1, & \text { if } \frac{1}{2} \leq x \leq \frac{3}{2} \\
2, & \text { if } \frac{3}{2} \leq x \leq \frac{5}{2} \\
3, & \text { if } \frac{5}{2} \leq x \leq 3\end{cases}\right.
$$

This suggests the following defining partition for $f(x):=[x]+\left[x+\frac{1}{2}\right],-1 \leq x \leq 2$ :

$$
\mathcal{P}:-1<-1 / 2<0<\cdots<5 / 2<3 \equiv x_{0}<x_{1}<\ldots x_{8},
$$

for the values of $f(x)$ on the $j$-th open subinterval are $-2,-1,0,1, \ldots, 5$, respectively, $j=1, \ldots, 8$. By definition

$$
\begin{aligned}
\int_{-1}^{3} f(x) d x & =\sum_{j=1}^{8}\left(\left.f\right|_{\left(x_{j-1}, x_{j}\right)}\right)(x) \Delta x_{j} \\
& =6 .
\end{aligned}
$$

8. Compute the integrals $\int_{0}^{3}\left[x^{2}\right] d x$ and $\int_{0}^{9}[\sqrt{x}] d x$. (Exactly as encountered in the previous problem, given $x \in \mathbb{R},[x]$ denotes the greatest integer $\leq x$.)

Sketch of solution: The same insight as for Problem 7 applies to this problem as well. The integrals are elementary. The detailed solution above to part 1(c) of the problem set 1.15 in Apostol gives you a template for presenting your solution systematically.

