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AUTUMN 2023

HINTS/SKETCH OF SOLUTIONS TO HOMEWORK 11 PROBLEMS

Instructor: GAUTAM BHARALI Assigned: OCTOBER 31, 2023

1. Let a < b be real numbers and let s : [a,b] — R be a step function.

a) Prove that s is integrable according to the abstract definition given in terms of upper and
the lower integrals (i.e., that s is Riemann integrable).

b) You have been given a formula for the integral of a step function on [a,b]. Show that the
value of the integral of s given by the above-mentioned definition agrees with that given by
the formula.

Sketch of solution: By definition of the sets S}F and SJT for any bounded function f : [a,b] — R,
(*)/ z)dr € S and Sy

where (*) f x)dz denotes, temporarily, the integral of s given by the formulas for step functions.
Thus, by deﬁmtlon of I(s) and I(s),

(*)/ z)dx < I(s) < 1(s) <(*)/

Therefore I(s) = I(s), which simultaneously shows that s is Riemann integrable and that

(*)/ x)dxr = /bs(m)dac

2. Let a < b be real numbers and let s : [a,b] — R be a step function. Let ¢ € R. Show that

b b+c
/ s(z)dx = / s(x —¢)dx.
Ja Ja+tc

Tip. In this case, it is clearly most efficient to work with the formula defining the integral of a
step function.

3. Let f be a function defined on an interval [—A, A], A > 0, and suppose f]| 0,4] 1s Riemann
integrable. Suppose f is an even function (i.e., f(z) = f(—=x) for any = € [—A, Aﬂ) Prove that f

is integrable and show that
A A
/ f(x)dx = 2/ f(x)dx
.y 0

Sketch of solution: Since [—A, A] = [-A,0]U[0, A] and f|g 4) is Riemann integrable, if we can
show that f[_4) is Riemann integrable, then we can use the theorem on additivity with respect



to interval of integration. Now, follow the proof of Theorem 1.19 in Apostol (which is not been
mentioned in class) to show that f[_4 ) is Riemann integrable, and

/OA flz)de = — /O -4 f(—x)dz = / OA f(—z)dz = / OA f(z)da. (1)

By additivity with respect to interval of integration, we have

/_1f($)dx:/_(;f(a:)d:v+/oAf(x)dx

A
—2 /0 f(@)da by (1)].

4. Fix r > 0 and define the non-negative function f : [—r,r] — R as follows:

—r<zxz<r.

. . 7 . .

Assuming that f € Z[—r,r], what do you expect the value of 'Lr f(x)dz to be? You are not
being asked to provide a calculation or a rigorous argument; guess the expected answer and give a
reason for this guess based on the motivation for the Riemann integral.

5. Let a < b be real numbers and let f : [a,b] — R be Riemann integrable on [a, b]. Show that for
any ¢,d € R such that a < ¢ <d <b, f|. 4 is Riemann integrable on [c, d].

Solution: By definitions of I(f) and I(f), given any n € N — {0}, there exist step functions
Sn,tn : [a,b] — R such that

1

b
1)~ 5 < [ salo)ds < 1),

b
I(f)g/ tn(m)dx<f(f)+%.

Thus,

b b
1) - 10) < [ taloddo = [ salodde <T() =15 +
— /b () d — /b sn(@)de < &, (2)

n
where (2) follows from the fact that I(f) = I(f), since f is Riemann integrable. From (2) and

linearity we have

b
0< / (b — 50)(2)da < . (3)

n

We know that (¢, — sp,) is a step function, so the auxiliary function

(tn — sn)(x) =

—— (tn — sp)(z), ifxz € lc,d],
0, otherwise,



is a step function. By the choices of s, and t,,, we know:

Sngfétn = th— 5, >0

— (tn*5n>2(tn*8n)20

So, by (3) and the Comparison Theorem:
b~ 1
0< / (tn — sp)(x)dx < —
a n
d 1
= 0< / (tn\[qd] — Sn‘[c,d]) (z)dx < = [by additivity with respect to interval ]
. n
d d 1
— o< / (balfet) (2)de —/ (snlieay) () <
Since snljc,q) < flic,q) and tulje,q) > flic,q), the last pair of inequalities give

_ 1
0<T(flia) —L(fljea) < -

Since the above is true for arbitrary n € N — {0}, we conclude f|. 4 is Riemann integrable.



