
UMA 101 :ANALYSIS & LINEAR ALGEBRA– I
AUTUMN 2023

HINTS/SKETCH OF SOLUTIONS TO HOMEWORK 12 PROBLEMS

Instructor: GAUTAM BHARALI Assigned: NOVEMBER 7, 2023

1. Let a < b ∈ R and let f ∈ R[a, b] be a step function. Let c ∈ (a, b). Show that

f |[a,c] ∈ R[a, c] and f |[c,b] ∈ R[c, b],

and that ∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx.

Note. The first part of this problem is already established by Problem 5 of Homework 11.

Sketch of solution: For simplicity, we shall write

f1 := f |[a,c] and f2 := f |[c,b].

Given step functions s1 : [a, c] → R, s2 : [c, b] → R, and s : [a, b] → R, let us define:

s1 ⋆ s2(x) :=

{
s1(x), if x ∈ [a, c),

s2(x), if x ∈ [c, b],

s
(s)
1 := s|[a,c] and s

(s)
2 := s|[c,b].

Now, if s1 and s2 are as above and s1 ≤ f1, s2 ≤ f2, then s1 ⋆ s2 ≤ f . Therefore

{s1 ⋆ s2 | s1 : [a, c] → R, s2 : [c, b] → R are step functions s.t. s1 ≤ f1, s2 ≤ f2}
⊆ {s : [a, b] → R | s is a step function s.t. s ≤ f}. (1)

By additivity with respect to intervals for step functions and from (1), we get

sup
{∫ c

a
s1(x) dx+

∫ b

c
s2(x) dx | s1 : [a, c] → R, s2 : [c, b] → R are step functions s.t. s1 ≤ f1, s2 ≤ f2

}
= sup

{∫ b

a
s1 ∗ s2(x) dx | s1 : [a, c] → R, s2 : [c, b] → R are step functions s.t. s1 ≤ f1, s2 ≤ f2}

≤ sup
{∫ b

a
s(x) dx | s is a step function s.t. s ≤ f

}
= I(f)

Now show that

I(f1) + I(f2)

≤ sup
{∫ c

a
s1(x) dx+

∫ b

c
s2(x) dx | s1 : [a, c] → R, s2 : [c, b] → R are step functions s.t. s1 ≤ f1, s2 ≤ f2

}
.

From the last two inequalities, we get

I(f1) + I(f2) ≤ I(f). (2)
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Next, if s1 and s2 are as above and s1 ≥ f1, s2 ≥ f2, then s1 ⋆ s2 ≥ f . Therefore

{s1 ⋆ s2 | s1 : [a, c] → R, s2 : [c, b] → R are step functions s.t. s1 ≥ f1, s2 ≥ f2}
⊆ {s : [a, b] → R | s is a step function s.t. s ≥ f}.

Argue along the same lines as in the previous paragraph to get

I(f) ≤ I(f1) + I(f2). (3)

From the conclusion of part (b) of Problem 4 below and from the inequalities (2) and (3), we get

I(f1) + I(f2) ≤ I(f) ≤ I(f) ≤ I(f1) + I(f2). (4)

Now, from the first part of this problem (which is a special case of Problem 5 in Homework 11),
we have

I(f1) = I(f1) =

∫ c

a
f(x) dx,

I(f2) = I(f2) =

∫ b

c
f(x) dx.

Combining the above with (4) and the fact that f ∈ R[a, b], we get∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx.

2. Self-study. Read the statement of the Small-span Theorem (i.e., Theorem 3.13) in Apostol’s
book. Next, study the proof of the fact that if f : [a, b] → R is continuous, then f is Riemann
integrable on [a, b] (i.e., Theorem 3.14 in Apostol’s book).

3. Let a < b ∈ R. Use the fact that if a function f : [a, b] → R is continuous, then it is uniformly
continuous, to give a short proof of the Small-span Theorem.

Sketch of solution: Fix ϵ > 0. Uniform continuity implies that ∃δ(ϵ) > 0 (depending only on ϵ)
such that

|f(x)− f(y)| < ϵ whenever x, y ∈ [a, b] and |x− y| < δ(ϵ). (5)

Define

N :=

[
b− a

δ(ϵ)

]
+ 1 and ∆ :=

b− a

N
,

where [.] denotes the greatest integer function. Let us now define the partition

Pϵ : a = x0 < x1 < x2 < · · · < xN = b,

where xj = a+ j∆, j = 0, 1, . . . , N . By construction:

x, y ∈ [xj−1 − xj ] =⇒ |x− y| ≤ b− a

N
< δ(ϵ) ∀j = 1, . . . , N. (6)

As f is continuous, for each j = 1, . . . , N,∃αj , βj ∈ [xj−1, xj ] such that

Mj = f(αj) and mj = f(βj),
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where

Mj := sup f |[xj−1,xj ] and mj := inf f |[xj−1,xj ].

By (6), |αj − βj | < δ(ϵ), whence by (5), 0 ≤ Mj −mj < ϵ for each j = 1, . . . , N .

4. Let a < b ∈ R and let f : [a, b] → R be a bounded function. The following discussion shows why
I(f) and I(f) are called the “lower integral” and the “upper integral”, respectively, of f .

a) Show that for any step function s1 : [a, b] → R such that s1 ≤ f and any step function
s2 : [a, b] → R such that s2 ≥ f , ∫ b

a
s1(x) dx ≤

∫ b

a
s2(x) dx.

b) Now deduce that I(f) ≤ I(f).

5. Show that the function fn : R → R, given by fn(x) := xn, is not uniformly continuous for
n ∈ N− {0, 1}.

Sketch of solution: The condition for uniform continuity is negated as follows:

(∗) ∃ϵ0 > 0 such that for each δ > 0,∃xδ, yδ ∈ R (the subscripts indicate that, in general, xδ and
yδ depend on δ) such that |xδ − yδ| < δ and |f(xδ)− f(yδ)| ≥ ϵ0.

Fix n ∈ N− {0, 1}. Use the identity

xn − yn = (x− y)(xn−1 + xn−2y + · · ·+ yn−1)

to show that (∗) holds with ϵ0 = 1. This is done as follows. Fix δ > 0, and pick any xδ > 0 such
that xδ ≥ (2/δn)1/(n−1). Take yδ := xδ + (δ/2). We have

|xδ − yδ| = δ/2 < δ textand
δ

2
nxn−1

δ ≥ 1 (7)

We now estimate

|xnδ − ynδ | =
δ

2

(
xn−1
δ + xn−2

δ

(
xδ +

δ

2

)
+ · · ·+

(
xδ +

δ

2

)n−1
)

≥ δ

2
nxn−1

δ .

By (7), we have |xnδ − ynδ | ≥ 1 = ϵ0, which demonstrates (∗).

6. You are given a function f : R → R that is continuous and satisfies∫ x

0
f(t)dt = 1 + x2 + x sin(2x) ∀x ∈ R.

Compute f(π/4).
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7–8. Solve Problems 17 and 22 from Section 5.5 of Apostol.

Sketches of solutions of Problems 7 & 8: Part (a) of Problem 22 is solved by a direct appeal to the
First Fundamental Theorem of Calculus (FTC), while part (c) is elementary. Parts (b) and (d) are
very similar, so we shall tackle part (d). Write

g(x) :=

∫ x

0
f(t)dt, x ≥ 0,

in which case the equation given in part (d) is

g
(
x2(x+ 1)

)
= x ∀x ≥ 0.

The First FTC, together with continuity of f , implies differentiability of g and and an expression
of g′, while the Chain Rule implies

f
(
x2(x+ 1)

)
(3x2 + 2x) = 1 ∀x > 0.

Taking x = 1 above gives us f(2) = 1/5.

We now discuss Problem 17. In this case, we pick and fix an arbitrary x ∈ R. Now pick a < b ∈ R
such that 0, 1, x ∈ (a, b). As f is continuous on R, f |[a,b] ∈ R[a, b] and so (·)2f |[a,b] ∈ R[a, b]. We
can thus apply the First FTC to get(∫ (·)

0
f(t)dt

)′

(x) = f(x)(∫ 1

(·)
t2f(t)dt

)′

(x) =

(
−
∫ (·)

1
t2f(t)dt

)′

(x) = −x2f(x).

Since x was arbitrary, the above are true ∀x ∈ R. So, differentiating both sides of the equation in
Problem 17 gives

f(x) = −x2f(x) + 2x15 + 2x17 ∀x ∈ R.

This gives us f(x) = 2x15∀x ∈ R. Finally, substituting x = 0 in the given equation, we have
(appealing to one of our conventions for the integral):∫ 1

0
2x17dx+ c = 0 =⇒ c = −1/9.

9. Recall the definition of the natural logarithm log : (0,∞) → (0,∞) introduced in class.

a) Prove that log is strictly increasing.

b) Assume without proof that the range of log is R. Thus, E := log−1 is a function defined on
R. E is called the exponential function; recall that we frequently write ex := E(x) for x ∈ R.
With this notation, prove that

ex ey = ex+y ∀x, y ∈ R.
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Sketch of solution: This sketch will only focus on part (b). Since, by part (a), E = log−1,

log(exey) = log(ex) + log(ey) [ by definition of log ]

= x+ y. [ as E = log−1 ]

Expontentiating both sides gives us exey = ex+y.

10. Based on our discussion on the Leibnizian notation and the meaning of the left-hand side
below, justify the equation: ∫

1

x
dx = log |x|+ C.

5


