UMA 101: ANALYSIS & LINEAR ALGEBRA -1
AUTUMN 2023

HINTS/SKETCH OF SOLUTIONS TO HOMEWORK 12 PROBLEMS

Instructor: GAUTAM BHARALI Assigned: NOVEMBER 7, 2023

1. Let a < b € R and let f € Z|a,b| be-astep-funetion. Let ¢ € (a,b). Show that
flia,q € Zla, ] and fl., € #[c,b],

/abf(:c)dx - /acf(x)da:+/cbf(:z)dx.

Note. The first part of this problem is already established by Problem 5 of Homework 11.

and that

Sketch of solution: For simplicity, we shall write

Ji= f|[a,c} and fy:= f|[c,b}‘

Given step functions sp : [a,¢] = R, s2: [¢,b] = R, and s : [a,b] — R, let us define:

_ [s1(2), ifzelae),
s1% s3(7) = {52(;5), if © € [c, 0],

() .

K () ,_

Slla, and 857 1= S|y
Now, if s7 and s9 are as above and s; < f1, sg < fo, then s1 x s9 < f. Therefore

{s1%s2]|s1:[a,c] > R, s3:[c,b] = R are step functions s.t. s1 < f1, s2 < fo}
C{s:[a,b] — R|sis a step function s.t. s < f}. (1)

By additivity with respect to intervals for step functions and from (1), we get
c b
sup {/ si(x) dx +/ so(x)dx|sy:[a,c] = R, s9: [c,b] = R are step functions s.t. s1 < f1, s9 < fQ}
a C
b
= sup {/ sy % so(x)dx| sy :[a,c] - R, s2:[c,b] — R are step functions s.t. s < f1, s2 < fao}
a
b
<sup {/ s(z)dx | s is a step function s.t. s < f} =1I(f)
a
Now show that
I(fH) + L(f2)
c b
< sup {/ s1(x) dm+/ so(x)dx| sy : [a,c] = R, sg:[c,b] = R are step functions s.t. s; < fi, s < fg}.
a (&
From the last two inequalities, we get

I(f1) + L(f2) < I(f). (2)



Next, if s1 and s9 are as above and s1 > f1, so > fo, then s1 x s9 > f. Therefore

{s1xs2|s1:[a,c] = R, s2:[c,b] = R are step functions s.t. s1 > fi, so > fo}
C {s:[a,b] — R|s is a step function s.t. s > f}.

Argue along the same lines as in the previous paragraph to get

I(f) < I(f1) + I(f2)- (3)
From the conclusion of part (b) of Problem 4 below and from the inequalities (2) and (3), we get
I(f1) + L(f2) < I(f) < I(f) < I(f1) + 1(f2). (4)

Now, from the first part of this problem (which is a special case of Problem 5 in Homework 11),
we have

10 =10 = | " f(x)da
— ab
1(f) =T(f2) = / f(z) da

Combining the above with (4) and the fact that f € Z[a,b], we get

/f da:—/f d:n+/f

2. Self-study. Read the statement of the Small-span Theorem (i.e., THEOREM 3.13) in Apostol’s
book. Next, study the proof of the fact that if f : [a,b] — R is continuous, then f is Riemann
integrable on [a, b] (i.e., THEOREM 3.14 in Apostol’s book).

3. Let a < b € R. Use the fact that if a function f : [a,b] — R is continuous, then it is uniformly
continuous, to give a short proof of the Small-span Theorem.

Sketch of solution: Fix e > 0. Uniform continuity implies that 35(¢) > 0 (depending only on ¢)
such that

|f(z) — f(y)| < € whenever z,y € [a,b] and |z —y| < d(e). (5)
Define ; )
—a —a
N_|:(S(E):|+1 and A—T,

where [.] denotes the greatest integer function. Let us now define the partition
Poia=xg<xi <a9<---<xNy =D,
where z; = a4+ jA, j=0,1,...,N. By construction:
b—a

xvye[mjflixj] = |$7y|— (6) Vi=1,...,N. (6)

As f is continuous, for each j =1,...,N,3a;, 5 € [xj—1, ;] such that

M; = f(aj) and m; = f(B;),



where
M; = sup f|[$]._1’mj] and m; = inff|[mj_1,l.j}.

By (6), |oj — Bj] < 6(€), whence by (5), 0 < M; —m; < e for each j=1,...,N.

4. Let a < b€ R and let f : [a,b] — R be a bounded function. The following discussion shows why
I(f) and I(f) are called the “lower integral” and the “upper integral”, respectively, of f.

a) Show that for any step function sy : [a,b] — R such that s; < f and any step function
s9 : [a,b] — R such that sy > f,

b b
/sl(w)d:l: < / so(x) dx.

Ja Ja

b) Now deduce that I(f) < I(f).

5. Show that the function f, : R — R, given by f,(z) := 2™, is not uniformly continuous for
neN-{0,1}.

Sketch of solution: The condition for uniform continuity is negated as follows:

() Jep > 0 such that for each 6 > 0,3xs, ys € R (the subscripts indicate that, in general, x5 and
ys depend on ¢) such that |x5 — ys| < 0 and |f(zs) — f(ys)| > €o-

Fix n € N— {0, 1}. Use the identity
"=yt = (z—y) @ " Py 4y )

to show that (%) holds with eg = 1. This is done as follows. Fix § > 0, and pick any x5 > 0 such
that x5 > (2/6n)"/=1). Take y5 := x5 + (6/2). We have

1)
lzs —ys| = /2 <0 textand §n:v§_1 >1 (7)
We now estimate

1) 1) o\ n—1 )
5 —ysl =35 <fc§‘1 + m§‘2(x5 + 5) ot <x5 + 5) ) > —naf
By (7), we have |z} — y}'| > 1 = €y, which demonstrates ().

6. You are given a function f:R — R that is continuous and satisfies
/ ft)dt = 142 + xsin(2r) Vz € R.
Jo

Compute f(m/4).



7—8. Solve Problems 17 and 22 from Section 5.5 of Apostol.

Sketches of solutions of Problems 7 € 8: Part (a) of Problem 22 is solved by a direct appeal to the
First Fundamental Theorem of Calculus (FTC), while part (c¢) is elementary. Parts (b) and (d) are
very similar, so we shall tackle part (d). Write

g(x) = / ft)dt, x>0,

0

in which case the equation given in part (d) is
g(z*(x+1)) =2 Vz>0.

The First FTC, together with continuity of f, implies differentiability of ¢ and and an expression
of ¢’, while the Chain Rule implies

f(@*(x+1))(32% +27) =1 Vz > 0.

Taking = = 1 above gives us f(2) = 1/5.

We now discuss Problem 17. In this case, we pick and fix an arbitrary x € R. Now picka < b € R
such that 0,1,z € (a,b). As f is continuous on R, f[[,4 € Z|a,b] and so (‘)2f|[a,b} € Zla,b]. We
can thus apply the First FTC to get

) !
( /0 f(t)dt> (2) = f(x)
1 I ) /
</ t2f(t)dt> (z) = (—/ t2f(t)dt> (z) = —2%f(z).
“) 1

Since x was arbitrary, the above are true Vax € R. So, differentiating both sides of the equation in
Problem 17 gives
flx) = —a?f(x) + 2215 + 22'7 vz e R

This gives us f(z) = 2z'°Vx € R. Finally, substituting = 0 in the given equation, we have
(appealing to one of our conventions for the integral):

1
/2x17dx+c:0 — c=—1/9.
0

9. Recall the definition of the natural logarithm log : (0,00) — (0, 00) introduced in class.
a) Prove that log is strictly increasing.

b) Assume without proof that the range of log is R. Thus, E := log™! is a function defined on
R. E is called the exponential function; recall that we frequently write e* := E(z) for x € R.
With this notation, prove that

e“e¥ = eV Vx,y € R.



Sketch of solution: This sketch will only focus on part (b). Since, by part (a), F = log™?,

log(e®e¥) = log(e”) + log(eY) [by definition of log|
=z +y. [as E =log ']
Expontentiating both sides gives us e®e¥ = .

10. Based on our discussion on the Leibnizian notation and the meaning of the left-hand side
below, justify the equation:

1
/dx = log|z|+ C.



