UMA 101: ANALYSIS \& LINEAR ALGEBRA - I
 AUTUMN 2023

HINTS/SKETCH OF SOLUTIONS TO HOMEWORK 12 PROBLEMS

Assigned: NOVEMBER 7, 2023

1. Let $a<b \in \mathbb{R}$ and let $f \in \mathscr{R}[a, b]$ step function. Let $c \in(a, b)$. Show that

$$
\left.f\right|_{[a, c]} \in \mathscr{R}[a, c] \quad \text { and }\left.f\right|_{[c, b]} \in \mathscr{R}[c, b],
$$

and that

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x .
$$

Note. The first part of this problem is already established by Problem 5 of Homework 11.
Sketch of solution: For simplicity, we shall write

$$
f_{1}:=\left.f\right|_{[a, c]} \quad \text { and } \quad f_{2}:=\left.f\right|_{[c, b]} .
$$

Given step functions $s_{1}:[a, c] \rightarrow \mathbb{R}, s_{2}:[c, b] \rightarrow \mathbb{R}$, and $s:[a, b] \rightarrow \mathbb{R}$, let us define:

$$
\begin{aligned}
s_{1} \star s_{2}(x) & := \begin{cases}s_{1}(x), & \text { if } x \in[a, c), \\
s_{2}(x), & \text { if } x \in[c, b],\end{cases} \\
s_{1}^{(s)} & :=\left.s\right|_{[a, c]} \quad \text { and } \quad s_{2}^{(s)}:=\left.s\right|_{[c, b]} .
\end{aligned}
$$

Now, if s_{1} and s_{2} are as above and $s_{1} \leq f_{1}, s_{2} \leq f_{2}$, then $s_{1} \star s_{2} \leq f$. Therefore

$$
\begin{align*}
&\left\{s_{1} \star s_{2} \mid s_{1}:[a, c] \rightarrow \mathbb{R}, s_{2}:[c, b] \rightarrow \mathbb{R} \text { are step functions s.t. } s_{1} \leq f_{1}, s_{2} \leq f_{2}\right\} \\
& \subseteq\{s:[a, b] \rightarrow \mathbb{R} \mid s \text { is a step function s.t. } s \leq f\} \tag{1}
\end{align*}
$$

By additivity with respect to intervals for step functions and from (1), we get

$$
\begin{aligned}
& \sup \left\{\int_{a}^{c} s_{1}(x) d x+\int_{c}^{b} s_{2}(x) d x \mid s_{1}:[a, c] \rightarrow \mathbb{R}, s_{2}:[c, b] \rightarrow \mathbb{R} \text { are step functions s.t. } s_{1} \leq f_{1}, s_{2} \leq f_{2}\right\} \\
& =\sup \left\{\int_{a}^{b} s_{1} * s_{2}(x) d x \mid s_{1}:[a, c] \rightarrow \mathbb{R}, s_{2}:[c, b] \rightarrow \mathbb{R} \text { are step functions s.t. } s_{1} \leq f_{1}, s_{2} \leq f_{2}\right\} \\
& \leq \sup \left\{\int_{a}^{b} s(x) d x \mid s \text { is a step function s.t. } s \leq f\right\}=\underline{I}(f)
\end{aligned}
$$

Now show that

$$
\begin{aligned}
& \underline{I}\left(f_{1}\right)+\underline{I}\left(f_{2}\right) \\
\leq & \sup \left\{\int_{a}^{c} s_{1}(x) d x+\int_{c}^{b} s_{2}(x) d x \mid s_{1}:[a, c] \rightarrow \mathbb{R}, s_{2}:[c, b] \rightarrow \mathbb{R} \text { are step functions s.t. } s_{1} \leq f_{1}, s_{2} \leq f_{2}\right\}
\end{aligned}
$$

From the last two inequalities, we get

$$
\begin{equation*}
\underline{I}\left(f_{1}\right)+\underline{I}\left(f_{2}\right) \leq \underline{I}(f) \tag{2}
\end{equation*}
$$

Next, if s_{1} and s_{2} are as above and $s_{1} \geq f_{1}, s_{2} \geq f_{2}$, then $s_{1} \star s_{2} \geq f$. Therefore

$$
\begin{aligned}
& \left\{s_{1} \star s_{2} \mid s_{1}:[a, c] \rightarrow \mathbb{R}, s_{2}:[c, b] \rightarrow \mathbb{R} \text { are step functions s.t. } s_{1} \geq f_{1}, s_{2} \geq f_{2}\right\} \\
& \qquad\{s:[a, b] \rightarrow \mathbb{R} \mid s \text { is a step function s.t. } s \geq f\}
\end{aligned}
$$

Argue along the same lines as in the previous paragraph to get

$$
\begin{equation*}
\bar{I}(f) \leq \bar{I}\left(f_{1}\right)+\bar{I}\left(f_{2}\right) \tag{3}
\end{equation*}
$$

From the conclusion of part (b) of Problem 4 below and from the inequalities (2) and (3), we get

$$
\begin{equation*}
\underline{I}\left(f_{1}\right)+\underline{I}\left(f_{2}\right) \leq \underline{I}(f) \leq \bar{I}(f) \leq \bar{I}\left(f_{1}\right)+\bar{I}\left(f_{2}\right) . \tag{4}
\end{equation*}
$$

Now, from the first part of this problem (which is a special case of Problem 5 in Homework 11), we have

$$
\begin{aligned}
& \underline{I}\left(f_{1}\right)=\bar{I}\left(f_{1}\right)=\int_{a}^{c} f(x) d x \\
& \underline{I}\left(f_{2}\right)=\bar{I}\left(f_{2}\right)=\int_{c}^{b} f(x) d x
\end{aligned}
$$

Combining the above with (4) and the fact that $f \in \mathscr{R}[a, b]$, we get

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x .
$$

2. Self-study. Read the statement of the Small-span Theorem (i.e., Theorem 3.13) in Apostol's book. Next, study the proof of the fact that if $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then f is Riemann integrable on $[a, b]$ (i.e., Theorem 3.14 in Apostol's book).
3. Let $a<b \in \mathbb{R}$. Use the fact that if a function $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then it is uniformly continuous, to give a short proof of the Small-span Theorem.
Sketch of solution: Fix $\epsilon>0$. Uniform continuity implies that $\exists \delta(\epsilon)>0$ (depending only on ϵ) such that

$$
\begin{equation*}
|f(x)-f(y)|<\epsilon \text { whenever } x, y \in[a, b] \text { and }|x-y|<\delta(\epsilon) . \tag{5}
\end{equation*}
$$

Define

$$
N:=\left[\frac{b-a}{\delta(\epsilon)}\right]+1 \quad \text { and } \quad \Delta:=\frac{b-a}{N}
$$

where [.] denotes the greatest integer function. Let us now define the partition

$$
\mathcal{P}_{\epsilon}: a=x_{0}<x_{1}<x_{2}<\cdots<x_{N}=b
$$

where $x_{j}=a+j \Delta, j=0,1, \ldots, N$. By construction:

$$
\begin{equation*}
x, y \in\left[x_{j-1}-x_{j}\right] \Longrightarrow|x-y| \leq \frac{b-a}{N}<\delta(\epsilon) \quad \forall j=1, \ldots, N . \tag{6}
\end{equation*}
$$

As f is continuous, for each $j=1, \ldots, N, \exists \alpha_{j}, \beta_{j} \in\left[x_{j-1}, x_{j}\right]$ such that

$$
M_{j}=f\left(\alpha_{j}\right) \quad \text { and } \quad m_{j}=f\left(\beta_{j}\right),
$$

where

$$
M_{j}:=\left.\sup f\right|_{\left[x_{j-1}, x_{j}\right]} \quad \text { and } \quad m_{j}:=\left.\inf f\right|_{\left[x_{j-1}, x_{j}\right]} .
$$

$\operatorname{By}(6),\left|\alpha_{j}-\beta_{j}\right|<\delta(\epsilon)$, whence by (5), $0 \leq M_{j}-m_{j}<\epsilon$ for each $j=1, \ldots, N$.
4. Let $a<b \in \mathbb{R}$ and let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. The following discussion shows why $\underline{I}(f)$ and $\bar{I}(f)$ are called the "lower integral" and the "upper integral", respectively, of f.
a) Show that for any step function $s_{1}:[a, b] \rightarrow \mathbb{R}$ such that $s_{1} \leq f$ and any step function $s_{2}:[a, b] \rightarrow \mathbb{R}$ such that $s_{2} \geq f$,

$$
\int_{a}^{b} s_{1}(x) d x \leq \int_{a}^{b} s_{2}(x) d x
$$

b) Now deduce that $\underline{I}(f) \leq \bar{I}(f)$.
5. Show that the function $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$, given by $f_{n}(x):=x^{n}$, is not uniformly continuous for $n \in \mathbb{N}-\{0,1\}$.

Sketch of solution: The condition for uniform continuity is negated as follows:
(*) $\exists \epsilon_{0}>0$ such that for each $\delta>0, \exists x_{\delta}, y_{\delta} \in \mathbb{R}$ (the subscripts indicate that, in general, x_{δ} and y_{δ} depend on δ) such that $\left|x_{\delta}-y_{\delta}\right|<\delta$ and $\left|f\left(x_{\delta}\right)-f\left(y_{\delta}\right)\right| \geq \epsilon_{0}$.

Fix $n \in \mathbb{N}-\{0,1\}$. Use the identity

$$
x^{n}-y^{n}=(x-y)\left(x^{n-1}+x^{n-2} y+\cdots+y^{n-1}\right)
$$

to show that $(*)$ holds with $\epsilon_{0}=1$. This is done as follows. Fix $\delta>0$, and pick any $x_{\delta}>0$ such that $x_{\delta} \geq(2 / \delta n)^{1 /(n-1)}$. Take $y_{\delta}:=x_{\delta}+(\delta / 2)$. We have

$$
\begin{equation*}
\left|x_{\delta}-y_{\delta}\right|=\delta / 2<\delta \quad \text { textand } \quad \frac{\delta}{2} n x_{\delta}^{n-1} \geq 1 \tag{7}
\end{equation*}
$$

We now estimate

$$
\left|x_{\delta}^{n}-y_{\delta}^{n}\right|=\frac{\delta}{2}\left(x_{\delta}^{n-1}+x_{\delta}^{n-2}\left(x_{\delta}+\frac{\delta}{2}\right)+\cdots+\left(x_{\delta}+\frac{\delta}{2}\right)^{n-1}\right) \geq \frac{\delta}{2} n x_{\delta}^{n-1} .
$$

By (7), we have $\left|x_{\delta}^{n}-y_{\delta}^{n}\right| \geq 1=\epsilon_{0}$, which demonstrates (*).
6. You are given a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is continuous and satisfies

$$
\int_{0}^{x} f(t) d t=1+x^{2}+x \sin (2 x) \quad \forall x \in \mathbb{R}
$$

Compute $f(\pi / 4)$.

7-8. Solve Problems 17 and 22 from Section 5.5 of Apostol.
Sketches of solutions of Problems 7 \& 8: Part (a) of Problem 22 is solved by a direct appeal to the First Fundamental Theorem of Calculus (FTC), while part (c) is elementary. Parts (b) and (d) are very similar, so we shall tackle part (d). Write

$$
g(x):=\int_{0}^{x} f(t) d t, \quad x \geq 0
$$

in which case the equation given in part (d) is

$$
g\left(x^{2}(x+1)\right)=x \quad \forall x \geq 0
$$

The First FTC, together with continuity of f, implies differentiability of g and and an expression of g^{\prime}, while the Chain Rule implies

$$
f\left(x^{2}(x+1)\right)\left(3 x^{2}+2 x\right)=1 \quad \forall x>0
$$

Taking $x=1$ above gives us $f(2)=1 / 5$.
We now discuss Problem 17. In this case, we pick and fix an arbitrary $x \in \mathbb{R}$. Now pick $a<b \in \mathbb{R}$ such that $0,1, x \in(a, b)$. As f is continuous on $\mathbb{R},\left.f\right|_{[a, b]} \in \mathscr{R}[a, b]$ and so $\left.(\cdot)^{2} f\right|_{[a, b]} \in \mathscr{R}[a, b]$. We can thus apply the First FTC to get

$$
\begin{aligned}
& \left(\int_{0}^{(\cdot)} f(t) d t\right)^{\prime}(x)=f(x) \\
& \left(\int_{(\cdot)}^{1} t^{2} f(t) d t\right)^{\prime}(x)=\left(-\int_{1}^{(\cdot)} t^{2} f(t) d t\right)^{\prime}(x)=-x^{2} f(x)
\end{aligned}
$$

Since x was arbitrary, the above are true $\forall x \in \mathbb{R}$. So, differentiating both sides of the equation in Problem 17 gives

$$
f(x)=-x^{2} f(x)+2 x^{15}+2 x^{17} \quad \forall x \in \mathbb{R}
$$

This gives us $f(x)=2 x^{15} \forall x \in \mathbb{R}$. Finally, substituting $x=0$ in the given equation, we have (appealing to one of our conventions for the integral):

$$
\int_{0}^{1} 2 x^{17} d x+c=0 \Longrightarrow c=-1 / 9 .
$$

9. Recall the definition of the natural logarithm $\log :(0, \infty) \rightarrow(0, \infty)$ introduced in class.
a) Prove that \log is strictly increasing.
b) Assume without proof that the range of \log is \mathbb{R}. Thus, $E:=\log ^{-1}$ is a function defined on \mathbb{R}. E is called the exponential function; recall that we frequently write $e^{x}:=E(x)$ for $x \in \mathbb{R}$. With this notation, prove that

$$
e^{x} e^{y}=e^{x+y} \quad \forall x, y \in \mathbb{R}
$$

Sketch of solution: This sketch will only focus on part (b). Since, by part (a), $E=\log ^{-1}$,

$$
\begin{aligned}
\log \left(e^{x} e^{y}\right) & =\log \left(e^{x}\right)+\log \left(e^{y}\right) & & {[\text { by definition of } \log] } \\
& =x+y . & & {\left[\text { as } E=\log ^{-1}\right] }
\end{aligned}
$$

Expontentiating both sides gives us $e^{x} e^{y}=e^{x+y}$.
10. Based on our discussion on the Leibnizian notation and the meaning of the left-hand side below, justify the equation:

$$
\int \frac{1}{x} d x=\log |x|+C
$$

