
UMA 101 :ANALYSIS & LINEAR ALGEBRA– I
AUTUMN 2023

HINTS/SKETCH OF SOLUTIONS TO HOMEWORK 13 PROBLEMS

Instructor: GAUTAM BHARALI Assigned: NOVEMBER 14, 2023

PLEASE NOTE: Only in rare circumstances will complete solutions be provided!

• What follows are hints for solving a problem or sketches of the solutions meant to help you through
the difficult parts (or, sometimes, to introduce a nice trick). You are encouraged to use these to obtain
complete solutions.

• Hints/solution-sketches will be provided for approximately half the problems in an assignment.

1. Consider the function f : [0, 1] → R defined as

f(x) :=

{
0, if x ∈ [0, 1] ∩Q,
1, if x ∈ [0, 1]−Q.

Show that f is not in R[0, 1].

Sketch of solution: The challenging part of this problem is not the examination of the definition
of the Riemann integral but verifying a couple of facts about R.
Fact 1. If x < y ∈ R then ∃q ∈ Q such that q ∈ (x, y).

While, for your examinations, the above may be considered as a fact about R that “may be taken
for granted,” its proof is sufficiently subtle to merit the following sketch:

• First consider the special case when y − x > 1. Now [x] + 1 ∈ Q. Show that [x] + 1 ∈ (x, y).

• Now consider the case when 0 < y − x ≤ 1. Note, first, that for any n ∈ N − {0}, as
(1/n)n = 1 and 1 > 0—by Theorem I.21—we have 1/n > 0 by Theorem I.24. By the
Archimedean property of R, ∃n0 ∈ N − {0} such that n0(y − x) > 1. Applying the previous
step, ∃s ∈ Q such that

n0x < s < n0y

=⇒ x < s/n0 < y [ by Theorem I.19 & the fact that 1/n0 > 0 ],

which completes the second step, because s/n0 ∈ Q.

Fact 2. If x < y ∈ R then ∃r ∈ R−Q such that r ∈ (x, y).

The proof of the above also comprises two steps.

• First consider the case when x ∈ Q. Note that, by definition,
√
2 > 0. Since (1/

√
2)
√
2 = 1

and 1 > 0, we have 1/
√
2 > 0 by Theorem I.24. Thus, (y − x)/

√
2 > 0, by Theorem I.19. By

the Archimedean property of R, ∃n ∈ N− {0} such that

n√
2
(y − x) > 1

=⇒ 0 <

√
2

n
< (y − x) [ by Theorem I.19 & the fact that

√
2/n > 0 ]

=⇒ x < x+

√
2

n
< y [ by Theorem I.18 ].

We now use the fact that
√
2 ∈ R−Q. As x ∈ Q, x+ (

√
2/n) ∈ R−Q.
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• Next, establish Fact 2 in the much simpler case when x ∈ R − Q (use the Archimedean
property of R).

Remark. There is a completely different proof of Fact 2, which is often considered the “standard”
one; it relies on a concept that we do not discuss in the first semester.

Now, consider a simple function s1 : [0, 1] → R such that s ≤ f . Let

P : 0 = x0 < x1 < · · · < xn = 1

be a partition defining s1. By Fact 1, for each j = 1, . . . , n, there exists qj ∈ Q such that qj ∈
(xj−1, xj). As f(qj) = 0, s1(x) ≤ 0 for all x ∈ (xj−1, xj), j = 1, . . . , n. Thus,

∫ 1
0 s1(x) dx ≤ 0. Since

this this is true for any s1 ≤ f

I(f) ≤ 0.

Now, argue similarly, but appealing to Fact 2, to deduce that

I(f) ≥ 1.

From the last two inequalities, we have I(f) > I(f). Thus, f /∈ R[0, 1].

2. Let E : R → (0,+∞) denote the exponential function defined in Homework 12 (recall that the
familiar notation for this function is related to E by setting ex := E(x) for every x ∈ R). Prove
that E is differentiable and compute, with justifications, E′(x).

3. The following problem is related to the proof of the statement that if V is a vector
space over a field F and S ⊆ V is a non-empty subset that obeys the closure laws with respect to
addition and scalar multiplication, then S contains a zero vector. Show that:

For S as above and 0 being a zero vector of V , 0x = 0 irrespective of x ∈ S.

Solution: Fix a zero vector 0 of V . (It turns out that considering a specific zero vector is
unnecessary, since 0 is the unique zero vector, but knowing this is not required in this proof.)
Pick an arbitrary x ∈ S and write v := 0x. Then

v + v = 0x+ 0x

= (0 + 0)x [ by the distributive law for scalars ]

= 0x = v (1)

Adding −v to both sides of (1) gives us 0x = v = 0. Since x was chosen arbitrarily, the last
equation holds irrespective of x.

4. Let S be some non-empty set and let F denote either R or C. Let VS(F) denote the set of of all
F-valued functions on S. For any f, g ∈ VS(F) and any c ∈ F, define

(f + g)(x) := f(x) + g(x) ∀x ∈ S,

(cf)(x) := cf(x) ∀x ∈ S.

Show that VS(F) is a vector space over F.
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5. Freely using—without proof—what you know about 3-D coordinate geometry from high school,
prove that any plane in R3 containing the origin (0, 0, 0) is a subspace of R3.

Sketch of solution: The description of a plane Π ⊊ R3 containing (0, 0, 0) in terms of 3-D coordinate
geometry is

Π := {(x, y, z) ∈ R3 : ax+ bx+ cz = 0},

where a, b, c ∈ R and at least one of a, b, or c is non-zero. Since Π ⊊ R3 and as R3 is a vector space
over R, we just need to establish that Π obeys the closure laws. To this end, let (xi, yi, zi) ∈ Π,
i = 1, 2. Then:

a(x1 + x2) + b(y1 + y2) + c(z1 + z2)

= (ax1 + by1 + cz1) + (ax2 + by2 + cz2)

= 0 [ since (x1, y1, z1), (x2, y2, z2) ∈ Π ].

This establishes closure with respect to addition. Now, using similar notation, work out closure
with respect to scalar multiplication.

6. Consider the set S = {eax, xeax}, where a ∈ R− {0}, viewed as a subset of VR(R) as defined in
Problem 4. Prove that S is a basis of L(S).

Solution: For the moment, let us write f(x) := eax = E(ax) ∀x ∈ R. The conclusion of Problem 2
is that E is differentiable and E′(x) = E(x) ∀x ∈ R. Thus, by the Chain Rule f is differentiable
and

f ′(x) = aE′(ax) = aeax ∀x ∈ R. (2)

Now, let c1, c2 ∈ R such that

c1e
ax + c2xe

ax =0

⇐⇒ F (x) := c1e
ax + c2xe

ax =0 ∀x ∈ R
=⇒ F and F ′ are identically 0. (3)

By (3) and by evaluating F at x = 0, we get c1 = 0. By (3), (2), and by evaluating F ′, at x = 0
we get (

c1ae
ax + c2(e

ax + axeax)
)∣∣

x=0
= 0

=⇒ c2(e
ax + axeax)|x=0 = 0 [ since c1 = 0 ]

=⇒ c2 = 0.

As c1 = c2 = 0, by definition, S is linearly independent.

7. Problem 7 from Section 15.9 in Apostol’s book.

Sketch of solution: We shall address two of the parts comprising this problem.

Part (b): Assume that dim(S) = dim(V ) = n. As V is finite dimensional, by our assumption, there
exists a set B with n elements that is a basis of S. Assume that S ⊊ V . Pick a vector v ∈ V − S.
Let B = {b1, . . . , bn}. Suppose

n∑
j=1

cjxj + av = 0 (4)
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for scalars c1, . . . , cn and a. Suppose a ̸= 0; this gives

v =

n∑
j=1

(cj/a)xj

which implies that v ∈ S, which is a contradiction. Thus a = 0. It follows from (4) that c1 = · · · =
cn = 0, since {b1, . . . , bn} is a linearly independent set. Thus {v} ∪ B is a linearly independent set
in V comprising (n+1) elements. This contradicts the fact that, since dim(V ) = n, every set in V
with (n+ 1) elements is linearly dependent. Hence, the assumption that S ⊊ V is false. We have
proved that

dim(S) = dim(V ) =⇒ S = V.

The converse is trivial.

Part (d): Let B be a basis of S. If V ⊋ S, then, by Part (c), we can find a basis B̃ ⊋ B of V . Show
that the set

B := (B̃ − B) ∪ {−v ∈ S : v ∈ B}

is also a basis of V . However B does not contain B. Next, if V = S, then B := {−v : v ∈ B} has
the latter property and, clearly, is a basis of V .

8. Let VR(R) be as defined in Problem 4. Find the dimension of L(S), S ⊂ VR(R), where

a) S = {ex cosx, ex sinx},

b) S = {1, cos 2x, cos2 x, sin2 x}.
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