# UMA 101: ANALYSIS \& LINEAR ALGEBRA-I <br> AUTUMN 2023 

HINTS/SKETCH OF SOLUTIONS TO HOMEWORK 13 PROBLEMS

## Instructor: GAUTAM BHARALI

Assigned: NOVEMBER 14, 2023

PLEASE NOTE: Only in rare circumstances will complete solutions be provided!

- What follows are hints for solving a problem or sketches of the solutions meant to help you through the difficult parts (or, sometimes, to introduce a nice trick). You are encouraged to use these to obtain complete solutions.
- Hints/solution-sketches will be provided for approximately half the problems in an assignment.

1. Consider the function $f:[0,1] \rightarrow \mathbb{R}$ defined as

$$
f(x):= \begin{cases}0, & \text { if } x \in[0,1] \cap \mathbb{Q}, \\ 1, & \text { if } x \in[0,1]-\mathbb{Q} .\end{cases}
$$

Show that $f$ is not in $\mathscr{R}[0,1]$.
Sketch of solution: The challenging part of this problem is not the examination of the definition of the Riemann integral but verifying a couple of facts about $\mathbb{R}$.
Fact 1. If $x<y \in \mathbb{R}$ then $\exists q \in \mathbb{Q}$ such that $q \in(x, y)$.
While, for your examinations, the above may be considered as a fact about $\mathbb{R}$ that "may be taken for granted," its proof is sufficiently subtle to merit the following sketch:

- First consider the special case when $y-x>1$. Now $[x]+1 \in \mathbb{Q}$. Show that $[x]+1 \in(x, y)$.
- Now consider the case when $0<y-x \leq 1$. Note, first, that for any $n \in \mathbb{N}-\{0\}$, as $(1 / n) n=1$ and $1>0$ - by Theorem I. 21 - we have $1 / n>0$ by Theorem I.24. By the Archimedean property of $\mathbb{R}, \exists n_{0} \in \mathbb{N}-\{0\}$ such that $n_{0}(y-x)>1$. Applying the previous step, $\exists s \in \mathbb{Q}$ such that

$$
n_{0} x<s<n_{0} y
$$

$$
\Longrightarrow x<s / n_{0}<y \quad\left[\text { by Theorem I. } 19 \text { \& the fact that } 1 / n_{0}>0\right]
$$

which completes the second step, because $s / n_{0} \in \mathbb{Q}$.
Fact 2. If $x<y \in \mathbb{R}$ then $\exists r \in \mathbb{R}-\mathbb{Q}$ such that $r \in(x, y)$.
The proof of the above also comprises two steps.

- First consider the case when $x \in \mathbb{Q}$. Note that, by definition, $\sqrt{2}>0$. Since $(1 / \sqrt{2}) \sqrt{2}=1$ and $1>0$, we have $1 / \sqrt{2}>0$ by Theorem I.24. Thus, $(y-x) / \sqrt{2}>0$, by Theorem I.19. By the Archimedean property of $\mathbb{R}, \exists n \in \mathbb{N}-\{0\}$ such that

$$
\begin{array}{rlrl}
\frac{n}{\sqrt{2}}(y-x) & >1 \\
& \Longrightarrow 0 & <\frac{\sqrt{2}}{n}<(y-x) & \\
& \text { [by Theorem I.19 \& the fact that } \sqrt{2} / n>0 \text { ] } \\
\Longrightarrow x & <x+\frac{\sqrt{2}}{n}<y & & \text { [by Theorem I.18]. }
\end{array}
$$

We now use the fact that $\sqrt{2} \in \mathbb{R}-\mathbb{Q}$. As $x \in \mathbb{Q}, x+(\sqrt{2} / n) \in \mathbb{R}-\mathbb{Q}$.

- Next, establish Fact 2 in the much simpler case when $x \in \mathbb{R}-\mathbb{Q}$ (use the Archimedean property of $\mathbb{R}$ ).

Remark. There is a completely different proof of Fact 2, which is often considered the "standard" one; it relies on a concept that we do not discuss in the first semester.

Now, consider a simple function $s_{1}:[0,1] \rightarrow \mathbb{R}$ such that $s \leq f$. Let

$$
\mathcal{P}: 0=x_{0}<x_{1}<\cdots<x_{n}=1
$$

be a partition defining $s_{1}$. By Fact 1 , for each $j=1, \ldots, n$, there exists $q_{j} \in \mathbb{Q}$ such that $q_{j} \in$ $\left(x_{j-1}, x_{j}\right)$. As $f\left(q_{j}\right)=0, s_{1}(x) \leq 0$ for all $x \in\left(x_{j-1}, x_{j}\right), j=1, \ldots, n$. Thus, $\int_{0}^{1} s_{1}(x) d x \leq 0$. Since this this is true for any $s_{1} \leq f$

$$
\underline{I}(f) \leq 0 .
$$

Now, argue similarly, but appealing to Fact 2, to deduce that

$$
\bar{I}(f) \geq 1
$$

From the last two inequalities, we have $\bar{I}(f)>\underline{I}(f)$. Thus, $f \notin \mathscr{R}[0,1]$.
2. Let $E: \mathbb{R} \rightarrow(0,+\infty)$ denote the exponential function defined in Homework 12 (recall that the familiar notation for this function is related to $E$ by setting $e^{x}:=E(x)$ for every $\left.x \in \mathbb{R}\right)$. Prove that $E$ is differentiable and compute, with justifications, $E^{\prime}(x)$.
3. The following problem is related to the proof of the statement that if $V$ is a vector space over a field $\mathbb{F}$ and $S \subseteq V$ is a non-empty subset that obeys the closure laws with respect to addition and scalar multiplication, then $S$ contains a zero vector. Show that:

For $S$ as above and $\overline{0}$ being a zero vector of $\boldsymbol{V}, 0 x=\overline{0}$ irrespective of $x \in S$.
Solution: Fix a zero vector $\overline{0}$ of $V$. (It turns out that considering a specific zero vector is unnecessary, since $\overline{0}$ is the unique zero vector, but knowing this is not required in this proof.) Pick an arbitrary $x \in S$ and write $v:=0 x$. Then

$$
\begin{array}{rlr}
v+v & =0 x+0 x & \\
& =(0+0) x & \text { [by the distributive law for scalars] } \\
& =0 x=v & \tag{1}
\end{array}
$$

Adding $-v$ to both sides of (1) gives us $0 x=v=\overline{0}$. Since $x$ was chosen arbitrarily, the last equation holds irrespective of $x$.
4. Let $S$ be some non-empty set and let $\mathbb{F}$ denote either $\mathbb{R}$ or $\mathbb{C}$. Let $V_{S}(\mathbb{F})$ denote the set of of all $\mathbb{F}$-valued functions on $S$. For any $f, g \in V_{S}(\mathbb{F})$ and any $c \in \mathbb{F}$, define

$$
\begin{aligned}
(f+g)(x) & :=f(x)+g(x) \quad \forall x \in S, \\
(c f)(x) & :=c f(x) \forall x \in S .
\end{aligned}
$$

Show that $V_{S}(\mathbb{F})$ is a vector space over $\mathbb{F}$.
5. Freely using - without proof - what you know about 3-D coordinate geometry from high school, prove that any plane in $\mathbb{R}^{3}$ containing the origin $(0,0,0)$ is a subspace of $\mathbb{R}^{3}$.
Sketch of solution: The description of a plane $\Pi \nsubseteq \mathbb{R}^{3}$ containing ( $0,0,0$ ) in terms of 3-D coordinate geometry is

$$
\Pi:=\left\{(x, y, z) \in \mathbb{R}^{3}: a x+b x+c z=0\right\}
$$

where $a, b, c \in \mathbb{R}$ and at least one of $a, b$, or $c$ is non-zero. Since $\Pi \nsubseteq \mathbb{R}^{3}$ and as $\mathbb{R}^{3}$ is a vector space over $\mathbb{R}$, we just need to establish that $\Pi$ obeys the closure laws. To this end, let $\left(x_{i}, y_{i}, z_{i}\right) \in \Pi$, $i=1,2$. Then:

$$
\begin{aligned}
& a\left(x_{1}+x_{2}\right)+b\left(y_{1}+y_{2}\right)+c\left(z_{1}+z_{2}\right) \\
= & \left(a x_{1}+b y_{1}+c z_{1}\right)+\left(a x_{2}+b y_{2}+c z_{2}\right) \\
= & 0 \quad\left[\text { since }\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right) \in \Pi\right] .
\end{aligned}
$$

This establishes closure with respect to addition. Now, using similar notation, work out closure with respect to scalar multiplication.
6. Consider the set $S=\left\{e^{a x}, x e^{a x}\right\}$, where $a \in \mathbb{R}-\{0\}$, viewed as a subset of $V_{\mathbb{R}}(\mathbb{R})$ as defined in Problem 4. Prove that $S$ is a basis of $L(S)$.
Solution: For the moment, let us write $f(x):=e^{a x}=E(a x) \forall x \in \mathbb{R}$. The conclusion of Problem 2 is that $E$ is differentiable and $E^{\prime}(x)=E(x) \forall x \in R$. Thus, by the Chain Rule $f$ is differentiable and

$$
\begin{equation*}
f^{\prime}(x)=a E^{\prime}(a x)=a e^{a x} \quad \forall x \in \mathbb{R} \tag{2}
\end{equation*}
$$

Now, let $c_{1}, c_{2} \in \mathbb{R}$ such that

$$
\begin{gather*}
c_{1} e^{a x}+c_{2} x e^{a x}=\overline{0} \\
\Longleftrightarrow F(x):=c_{1} e^{a x}+c_{2} x e^{a x}=0 \quad \forall x \in \mathbb{R} \\
\Longrightarrow F \text { and } F^{\prime} \text { are identically } 0 \tag{3}
\end{gather*}
$$

By (3) and by evaluating $F$ at $x=0$, we get $c_{1}=0$. By (3), (2), and by evaluating $F^{\prime}$, at $x=0$ we get

$$
\begin{array}{rlr}
\left.\left(c_{1} a e^{a x}+c_{2}\left(e^{a x}+a x e^{a x}\right)\right)\right|_{x=0} & =0 & \\
\left.\Longrightarrow c_{2}\left(e^{a x}+a x e^{a x}\right)\right|_{x=0} & =0 \\
\Longrightarrow c_{2} & =0 & {\left[\text { since } c_{1}=0\right]}
\end{array}
$$

As $c_{1}=c_{2}=0$, by definition, $S$ is linearly independent.
7. Problem 7 from Section 15.9 in Apostol's book.

Sketch of solution: We shall address two of the parts comprising this problem.
Part (b): Assume that $\operatorname{dim}(S)=\operatorname{dim}(V)=n$. As $V$ is finite dimensional, by our assumption, there exists a set $\mathcal{B}$ with $n$ elements that is a basis of $S$. Assume that $S \varsubsetneqq V$. Pick a vector $v \in V-S$. Let $\mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\}$. Suppose

$$
\begin{equation*}
\sum_{j=1}^{n} c_{j} x_{j}+a v=\overline{0} \tag{4}
\end{equation*}
$$

for scalars $c_{1}, \ldots, c_{n}$ and $a$. Suppose $a \neq 0$; this gives

$$
v=\sum_{j=1}^{n}\left(c_{j} / a\right) x_{j}
$$

which implies that $v \in S$, which is a contradiction. Thus $a=0$. It follows from (4) that $c_{1}=\cdots=$ $c_{n}=0$, since $\left\{b_{1}, \ldots, b_{n}\right\}$ is a linearly independent set. Thus $\{v\} \cup \mathcal{B}$ is a linearly independent set in $V$ comprising $(n+1)$ elements. This contradicts the fact that, since $\operatorname{dim}(V)=n$, every set in $V$ with $(n+1)$ elements is linearly dependent. Hence, the assumption that $S \varsubsetneqq V$ is false. We have proved that

$$
\operatorname{dim}(S)=\operatorname{dim}(V) \Longrightarrow S=V
$$

The converse is trivial.
Part (d): Let $\mathcal{B}$ be a basis of $S$. If $V \nsupseteq S$, then, by Part (c), we can find a basis $\widetilde{\mathcal{B}} \nsupseteq \mathcal{B}$ of $V$. Show that the set

$$
\mathfrak{B}:=(\widetilde{\mathcal{B}}-\mathcal{B}) \cup\{-v \in S: v \in \mathcal{B}\}
$$

is also a basis of $V$. However $\mathfrak{B}$ does not contain $\mathcal{B}$. Next, if $V=S$, then $\mathfrak{B}:=\{-v: v \in \mathcal{B}\}$ has the latter property and, clearly, is a basis of $V$.
8. Let $V_{\mathbb{R}}(\mathbb{R})$ be as defined in Problem 4. Find the dimension of $L(S), S \subset V_{\mathbb{R}}(\mathbb{R})$, where
a) $S=\left\{e^{x} \cos x, e^{x} \sin x\right\}$,
b) $S=\left\{1, \cos 2 x, \cos ^{2} x, \sin ^{2} x\right\}$.

