UMA 101: ANALYSIS & LINEAR ALGEBRA -1
AUTUMN 2023

HINTS/SKETCH OF SOLUTIONS TO HOMEWORK 13 PROBLEMS

Instructor: GAUTAM BHARALI Assigned: NOVEMBER 14, 2023

PLEASE NOTE: Only in rare circumstances will complete solutions be provided!

e What follows are hints for solving a problem or sketches of the solutions meant to help you through
the difficult parts (or, sometimes, to introduce a nice trick). You are encouraged to use these to obtain
complete solutions.

e Hints/solution-sketches will be provided for approximately half the problems in an assignment.

1. Consider the function f : [0,1] — R defined as
0, ifze[0,1]NQ,
flay = 0 BTEO
1, ifzxel0,1] -Q.
Show that f is not in Z[0, 1].

Sketch of solution: The challenging part of this problem is not the examination of the definition
of the Riemann integral but verifying a couple of facts about R.

Fact 1. Ifz <y € R then 3q € Q such that q € (x,y).

While, for your examinations, the above may be considered as a fact about R that “may be taken
for granted,” its proof is sufficiently subtle to merit the following sketch:

e First consider the special case when y — 2z > 1. Now [z] + 1 € Q. Show that [z] + 1 € (x,y).

e Now consider the case when 0 < y —x < 1. Note, first, that for any n € N — {0}, as
(I/n)n = 1 and 1 > 0—Dby Theorem 1.21—we have 1/n > 0 by Theorem 1.24. By the
Archimedean property of R, 3ng € N — {0} such that ng(y — ) > 1. Applying the previous
step, ds € Q such that

nor < s < noy
— x < s/ng <y [by Theorem 1.19 & the fact that 1/ng > 0],

which completes the second step, because s/ng € Q.

Fact 2. Ifz <y € R then Ir € R — Q such that r € (z,y).
The proof of the above also comprises two steps.
e First consider the case when x € Q. Note that, by definition, v/2 > 0. Since (1/v/2)v2 =1

and 1 > 0, we have 1/v/2 > 0 by Theorem 1.24. Thus, (y — z)/v/2 > 0, by Theorem 1.19. By
the Archimedean property of R, 3n € N — {0} such that

n
—(y—z) >1
AL
V2
= 0< — < (y—ux) [by Theorem 1.19 & the fact that v2/n > 0]
n
2
= z < z+ £ <y [by Theorem I.18].
n

We now use the fact that V2 € R - Q. Asz € Q, z + (v2/n) € R — Q.



e Next, establish Fact 2 in the much simpler case when © € R — Q (use the Archimedean
property of R).

Remark. There is a completely different proof of Fact 2, which is often considered the “standard”

one; it relies on a concept that we do not discuss in the first semester.

Now, consider a simple function s; : [0, 1] — R such that s < f. Let
P:0=x<11 < <2y =1

be a partition defining s;. By Fact 1, for each j = 1,...,n, there exists ¢; € Q such that ¢; €
(xj—1,25). As f(gj) =0, s1(z) < O0forall x € (zj_1,2;), j =1,...,n. Thus, f() s1(z) dx < 0. Since
this this is true for any s; < f

I(f) < 0.

Now, argue similarly, but appealing to Fact 2, to deduce that
I(f) > 1.

From the last two inequalities, we have I(f) > I(f). Thus, f ¢ Z[0,1].

2. Let £ : R — (0,+00) denote the exponential function defined in Homework 12 (recall that the
familiar notation for this function is related to E by setting e := FE(x) for every = € R). Prove
that F is differentiable and compute, with justifications, F’'(x).

3. The following problem is related to the proof of the statement that if V' is a vector
space over a field F and S C V is a non-empty subset that obeys the closure laws with respect to
addition and scalar multiplication, then S contains a zero vector. Show that:

For S as above and 0 being a zero vector of V, 0x = 0 irrespective of x € S.

Solution: Fix a zero vector 0 of V. (It turns out that considering a specific zero vector is
unnecessary, since 0 is the unique zero vector, but knowing this is not required in this proof.)
Pick an arbitrary x € S and write v := 0z. Then

v+v=_0x+ 0z
=(0+40)x [by the distributive law for scalars ]
=0z =v (1)

Adding —v to both sides of (1) gives us 0z = v = 0. Since x was chosen arbitrarily, the last
equation holds irrespective of x.

4. Let S be some non-empty set and let F denote either R or C. Let Vg(F) denote the set of of all
F-valued functions on S. For any f,g € Vg(F) and any ¢ € IF, define

(f+9)(x) = f(x)+g(x) Yo €S,
(cf)(x) := cf(x) Yz € 8S.

Show that Vg(IF) is a vector space over F.



5. Freely using — without proof — what you know about 3-D coordinate geometry from high school,
prove that any plane in R?® containing the origin (0,0, 0) is a subspace of R3.

Sketch of solution: The description of a plane IT & R? containing (0, 0, 0) in terms of 3-D coordinate
geometry is
I := {(z,y,2) € R®:ax + bx + cz = 0},

where a, b, c € R and at least one of a, b, or c is non-zero. Since IT & R3 and as R is a vector space
over R, we just need to establish that IT obeys the closure laws. To this end, let (x;,y;,z;) € II,
i =1,2. Then:

a(x1 + x2) + b(y1 + y2) + c(z1 + 22)
= (aml + by + CZl) + (CLQEQ + by + CZQ)
=0 [since (z1,y1,21), (T2,y2,22) € II].

This establishes closure with respect to addition. Now, using similar notation, work out closure
with respect to scalar multiplication.

6. Consider the set S = {e*, ze*}, where a € R — {0}, viewed as a subset of Vg(R) as defined in
Problem 4. Prove that S is a basis of L(.5).

Solution: For the moment, let us write f(x) := e*® = E(ax) Vx € R. The conclusion of Problem 2
is that F is differentiable and E’'(z) = E(z) Vo € R. Thus, by the Chain Rule f is differentiable
and

f'(z) = aE'(ax) = ae®™ Vx €R. (2)

Now, let ¢1,co € R such that
1% + coze®® =0

< F(z) := 1™ + coze®™ =0 Vx eR
= F and F’ are identically 0. (3)

By (3) and by evaluating F' at = 0, we get ¢; = 0. By (3), (2), and by evaluating F’, at x = 0
we get

(crae™ + ca(e™ + aze™)) ‘x:O =0
= co(e™ +axe™)|,_y = 0 [since ¢; = 0]
== ¢ =0

As ¢y = ¢ = 0, by definition, S is linearly independent.

7. Problem 7 from Section 15.9 in Apostol’s book.

Sketch of solution: We shall address two of the parts comprising this problem.

Part (b): Assume that dim(S) = dim(V) = n. As V is finite dimensional, by our assumption, there
exists a set B with n elements that is a basis of S. Assume that S & V. Pick a vector v € V — 5.
Let B ={by,...,b,}. Suppose

n

Z cjzj+av =0 (4)

j=1



for scalars c1,...,c, and a. Suppose a # 0; this gives

v=> (c/a)z;

Jj=1

which implies that v € S, which is a contradiction. Thus a = 0. It follows from (4) that ¢; = --- =
¢n = 0, since {by,...,b,} is a linearly independent set. Thus {v} U B is a linearly independent set
in V' comprising (n + 1) elements. This contradicts the fact that, since dim(V') = n, every set in V
with (n + 1) elements is linearly dependent. Hence, the assumption that S ¢ V is false. We have
proved that

dim(S) =dim(V) = S = V.

The converse is trivial.

Part (d): Let B be a basis of S. If V 2 S, then, by Part (c), we can find a basis B 2 B of V. Show
that the set

B = (B-B)U{-veS:veB}

is also a basis of V. However B does not contain B. Next, if V =5, then B := {—v : v € B} has
the latter property and, clearly, is a basis of V.

8. Let Vgr(R) be as defined in Problem 4. Find the dimension of L(S), S C Vg(R), where
a) S={e*cosz,e’sinz},

b) S = {1,cos2x,cos? z,sin® x}.



