UMA 101: ANALYSIS \& LINEAR ALGEBRA-I AUTUMN 2023

HINTS/SKETCH OF SOLUTIONS TO HOMEWORK 2 PROBLEMS
Instructor: GAUTAM BHARALI
Assigned: AUGUST 15, 2023

PLEASE NOTE: Only in rare circumstances will complete solutions be provided!

- What follows are hints for solving a problem or sketches of the solutions meant to help you through the difficult parts (or, sometimes, to introduce a nice trick). You are encouraged to use these to obtain complete solutions.
- Hints/solution-sketches will be provided for approximately half the problems in an assignment.

1. Peano multiplication is given by the following two rules:

$$
\begin{aligned}
n \cdot 0 & :=0 \\
n \cdot S(m) & :=(n \cdot m)+n \quad \forall m, n \in \mathbb{N}
\end{aligned}
$$

Strictly speaking, this leaves some work to be done to show that multiplication is defined between every pair of natural numbers. Hence, show that the rules of Peano multiplication give us the value of $n \cdot m$ for all $m, n \in \mathbb{N}$.

Sketch of solution: We must consider two cases when considering $n \cdot m$.
Case 1. $m=0$.
In this case, the first rule defines

$$
n \cdot m=n \cdot 0:=0 \quad \forall n \in \mathbb{N}
$$

Case 2. $m \neq 0$.
To establish this case, show using mathematical induction that:
(*) Let $T(m)$ denote a statement involving $n \in \mathbb{N}$. If $T(1)$ is true and $T(S(m))$ is true whenever $T(m)$ is true, then $T(m)$ is true for all $m \in \mathbb{N}-\{0\}$.

Now use $(*)$ to prove the statement: For each $m \in \mathbb{N}, m \neq 0, \exists m^{\prime} \in \mathbb{N}$ such that $m=S\left(m^{\prime}\right)$.
By the last fact, for any $m \neq 0$

$$
n \cdot m=n \cdot S\left(m^{\prime}\right) \quad \forall n \in \mathbb{N}
$$

and the R.H.S is defined by the second rule.
By Case 1 and Case 2, $n \cdot m$ is defined for all $m, n \in \mathbb{N}$.
The above proof relies, in essence, on the idea that if $m \in \mathbb{N}-\{0\}$, then it has a "predecessor". However, we can give an alternative proof. Here, we will apply mathematical induction (a.k.a. Peano's Axiom $\mathrm{P}(5)$) to m. Write the statement, where m is a fixed natural number,

$$
\Sigma(m): \quad n \cdot m \text { defines a natural number } \forall n \in \mathbb{N} \text {. }
$$

Here, proving that $\Sigma(0)$ is true is just CASE 1 above. The proof that $\Sigma(S(m))$ is true whenever $\Sigma(m)$ is true is given by the second rule for "." above.

The following notation applies to the next two problems. Define the set

$$
A_{n}:=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \ldots, \overline{n-1}\}
$$

where $n \in \mathbb{N}-\{0,1\}$. We define the two operations + and \cdot on A_{n} as follows:

$$
\begin{equation*}
\bar{a}+\bar{b}:=\bar{c}, \quad \bar{a} \times \bar{b}:=\bar{d} \tag{1}
\end{equation*}
$$

where c and d are obtained as follows:

$$
\begin{aligned}
& c=\text { the remainder obtained when dividing }(a+b) \text { by } n, \\
& d=\text { the remainder obtained when dividing }(a \cdot b) \text { by } n .
\end{aligned}
$$

(The operations between the unbarred variables a and b above are the usual/Peano addition and multiplication between natural numbers.) Note that the rules for + and \cdot in A_{n} depend on the \boldsymbol{n} considered.
2. Show that $\left(A_{2},+, \cdot\right)$ is a field.
3. Is $\left(A_{6},+, \cdot\right)$ a field? Justifiy your answer.

Sketch of solution: $\left(A_{6},+, \cdot\right)$ is not a field.
To show this, compute

$$
\overline{2} \cdot \bar{m} \text { for } m=0, \ldots, 5
$$

and conclude that $\overline{2}$ has no reciprocal in A_{6}.
The next two problems are devoted to showing that many statements that we take for granted about \mathbb{R} require proofs based on \mathbb{R} being an ordered field. While \mathbb{R} has just been introduced, these problems will rely on the first thing to be presented on August 16: i.e., that Apostol's treatment of \mathbb{R} is one where its existence and well-definedness are taken to be axioms: namely, Axioms 1-9 in Apostol, Sections I-3.2 and I-3.4.
4. (a part of Apostol, I-3.5, Prob. 1) Using only the field axioms and the order axioms for \mathbb{R}, prove the following:
Theorem. Let $a, b, c \in \mathbb{R}$. If $a<b$ and $c<0$, then $a c>b c$.
5. (Apostol, I-3.5, Prob. 2) Using only the field axioms and the order axioms for \mathbb{R}, show that there is no real number x such that $x^{2}+1=0$.
Note. You may freely use without proof any of Theorems I.17-I. 25 in Apostol, Section I-3.4, without proof.

Sketch of solution: To prove this, we first establish the following:
(A) If $a \in \mathbb{R}$ and $a \neq 0$, then $a^{2}>0$.
(B) If for $a, b, c \in \mathbb{R}, a<b$, then $a+c<b+c$.
(A) and (B) are Theorems I. 20 and I.18, respectively, from Apostol, whose proofs using only field axioms and order axioms are given in your book.

Now assume $\exists x \in \mathbb{R}$ such that $x^{2}+1=0$. Now, $x \neq 0$ because, otherwise

$$
x^{2}+1=0+1=1 \neq 0
$$

As $x \neq 0$, by (A), $x^{2}>0$. Then, by (B),

$$
\begin{equation*}
x^{2}+1>0+1=1 . \tag{2}
\end{equation*}
$$

Applying (A) to $a=1$ gives us $1>0$. Combining this with (2), we have

$$
x^{2}+1>1>0 .
$$

Now, by the Transitive Law (Theorem I.17), we get $x^{2}+1>0$. This is a contradiction; hence the proof.

