UMA 101: ANALYSIS & LINEAR ALGEBRA – I AUTUMN 2023

HINTS/SKETCH OF SOLUTIONS TO HOMEWORK 2 PROBLEMS

Instructor: GAUTAM BHARALI

Assigned: AUGUST 15, 2023

PLEASE NOTE: Only in rare circumstances will complete solutions be provided!

- What follows are **hints** for solving a problem or **sketches** of the solutions meant to help you through the difficult parts (or, sometimes, to introduce a nice trick). You are encouraged to use these to obtain complete solutions.
- Hints/solution-sketches will be provided for approximately half the problems in an assignment.
- **1.** Peano multiplication is given by the following two rules:

$$n \cdot 0 := 0,$$

$$n \cdot S(m) := (n \cdot m) + n \quad \forall m, n \in \mathbb{N}.$$

Strictly speaking, this leaves some work to be done to show that multiplication is defined between **every** pair of natural numbers. Hence, show that the rules of Peano multiplication give us the value of $n \cdot m$ for all $m, n \in \mathbb{N}$.

Sketch of solution: We must consider two cases when considering $n \cdot m$.

CASE 1. m = 0. In this case, the first rule defines

$$n \cdot m = n \cdot 0 := 0 \quad \forall n \in \mathbb{N}.$$

Case 2. $m \neq 0$.

To establish this case, show using mathematical induction that:

(*) Let T(m) denote a statement involving $n \in \mathbb{N}$. If T(1) is true and T(S(m)) is true whenever T(m) is true, then T(m) is true for all $m \in \mathbb{N} - \{0\}$.

Now use (*) to prove the statement: For each $m \in \mathbb{N}$, $m \neq 0$, $\exists m' \in \mathbb{N}$ such that m = S(m').

By the last fact, for any $m \neq 0$

$$n \cdot m = n \cdot S(m') \quad \forall n \in \mathbb{N},$$

and the R.H.S is defined by the second rule.

By CASE 1 and CASE 2, $n \cdot m$ is defined for all $m, n \in \mathbb{N}$.

The above proof relies, in essence, on the idea that if $m \in \mathbb{N} - \{0\}$, then it has a "predecessor". However, we can give an **alternative** proof. Here, we will apply mathematical induction (a.k.a. Peano's Axiom P(5)) to m. Write the statement, where m is a fixed natural number,

 $\Sigma(m)$: $n \cdot m$ defines a natural number $\forall n \in \mathbb{N}$.

Here, proving that $\Sigma(0)$ is true is just CASE 1 above. The proof that $\Sigma(S(m))$ is true whenever $\Sigma(m)$ is true is given by the **second** rule for " \cdot " above.

The following notation applies to the next two problems. Define the set

$$A_n := \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \dots, \overline{n-1}\}$$

where $n \in \mathbb{N} - \{0, 1\}$. We define the two operations + and \cdot on A_n as follows:

$$\overline{a} + \overline{b} := \overline{c}, \qquad \overline{a} \times \overline{b} := \overline{d}, \tag{1}$$

where c and d are obtained as follows:

c = the remainder obtained when dividing (a + b) by n,

d = the remainder obtained when dividing $(a \cdot b)$ by n.

(The operations between the unbarred variables a and b above are the usual/Peano addition and multiplication between natural numbers.) Note that the rules for + and \cdot in A_n depend on the n considered.

2. Show that $(A_2, +, \cdot)$ is a field.

3. Is $(A_6, +, \cdot)$ a field? Justify your answer.

Sketch of solution: $(A_6, +, \cdot)$ is **not** a field.

To show this, compute

 $\overline{2} \cdot \overline{m}$ for $m = 0, \dots, 5$,

and conclude that $\overline{2}$ has no reciprocal in A_6 .

The next two problems are devoted to showing that many statements that we take for granted about \mathbb{R} require **proofs** based on \mathbb{R} being an ordered field. While \mathbb{R} has just been introduced, these problems will rely on the **first thing to be presented on August 16:** i.e., that Apostol's treatment of \mathbb{R} is one where its existence and well-definedness are taken to be axioms: namely, **Axioms 1–9** in Apostol, Sections I-3.2 and I-3.4.

4. (a part of Apostol, I-3.5, Prob. 1) Using **only** the field axioms and the order axioms for \mathbb{R} , prove the following:

Theorem. Let $a, b, c \in \mathbb{R}$. If a < b and c < 0, then ac > bc.

5. (Apostol, I-3.5, Prob. 2) Using **only** the field axioms and the order axioms for \mathbb{R} , show that there is no real number x such that $x^2 + 1 = 0$.

Note. You may freely use without proof any of Theorems I.17–I.25 in Apostol, Section I-3.4, without proof.

Sketch of solution: To prove this, we first establish the following:

- (A) If $a \in \mathbb{R}$ and $a \neq 0$, then $a^2 > 0$.
- (B) If for $a, b, c \in \mathbb{R}$, a < b, then a + c < b + c.

(A) and (B) are Theorems I.20 and I.18, respectively, from Apostol, whose proofs using only field axioms and order axioms are given in your book.

Now assume $\exists x \in \mathbb{R}$ such that $x^2 + 1 = 0$. Now, $x \neq 0$ because, otherwise

$$x^2 + 1 = 0 + 1 = 1 \neq 0$$

As $x \neq 0$, by (A), $x^2 > 0$. Then, by (B),

$$x^2 + 1 > 0 + 1 = 1. (2)$$

Applying (A) to a = 1 gives us 1 > 0. Combining this with (2), we have

$$x^2 + 1 > 1 > 0.$$

Now, by the Transitive Law (Theorem I.17), we get $x^2 + 1 > 0$. This is a contradiction; hence the proof.