UMA 101: ANALYSIS \& LINEAR ALGEBRA-I AUTUMN 2023

HINTS/SKETCH OF SOLUTIONS TO HOMEWORK 3 PROBLEMS
Instructor: GAUTAM BHARALI
Assigned: AUGUST 22, 2023

PLEASE NOTE: Only in rare circumstances will complete solutions be provided!

- What follows are hints for solving a problem or sketches of the solutions meant to help you through the difficult parts (or, sometimes, to introduce a nice trick). You are encouraged to use these to obtain complete solutions.
- Hints/solution-sketches will be provided for approximately half the problems in an assignment.

1. Prove the following: Let $T(m)$ denote a statement involving $m \in \mathbb{N}$. If $T(1)$ is true, and $T(S(m))$ is true whenever $T(m)$ is true, then $T(m)$ is true for all m in $\mathbb{N}-\{0\}$.
Remark. You saw the above statement in connection with Quiz 1 as something that you could assume. You are now asked to prove it.
Sketch of solution: Define the statement

$$
\Sigma(m):=T(S(m))
$$

This makes sense since $S(m) \in \mathbb{N}$ for each m. Since $1=S(0)$,

$$
T(1) \text { is true } \Longrightarrow \Sigma(0) \text { is true. }
$$

Since $T(S(m))$ is true whenever $T(m)$ is true,

$$
\Sigma(S(m))=T(S(S(m))) \text { is true whenever } T(S(m)) \text { is true. }
$$

But as $T(S(m))=\Sigma(m)$, we just showed that $\Sigma(S(m))$ is true whenever $\Sigma(m)$ is true. Thus, by the principle of mathematical induction

$$
\begin{aligned}
& \Sigma(m) \text { is true } \forall m \in \mathbb{N} \\
\Longrightarrow & T(m) \text { is true } \forall m \in \mathbb{N}-\{0\} .
\end{aligned}
$$

2. Let \mathbb{F} be an ordered field and let S be a non-empty subset of \mathbb{F}. Show that if S has a least upper bound in \mathbb{F}, then it is unique.
Remark. With S as above, its unique least upper bound is also referred to by a shorter word: the supremum of S, denoted by $\sup S$.
3. (Apostol, I-3.12, Prob. 2) Let x be an arbitrary real number. Show that there exist integers m and n such that $m<x<n$.
Clarification. The set of integers is the set $\mathbb{N} \cup\{-n: n \in \mathbb{P}\}$, where $-n$ is the negative of n viewed as an element of \mathbb{R}.
Hint. It can useful to consider Theorem I. 28 in Apostol.

Sketch of solution: We already know that \mathbb{P} is not bounded above. So, as $\mathbb{P} \subset \mathbb{Z}, \mathbb{Z}$ too is not bounded above. We now prove the following:
Claim. \mathbb{Z} is not bounded below.
(Remark. This problem will rely on your formulating the definitions asked in Problem 4.)
Assume \mathbb{Z} is not bounded below. Then \mathbb{Z} must have a lower bounded. I.e., $\exists l \in \mathbb{R}$ such that $l \leq n \forall n \in \mathbb{Z}$. Suppose $l \in \mathbb{Z}-\mathbb{N}$. Then $(l-1) \in \mathbb{Z}-\mathbb{N}$ by our definition of $\mathbb{Z}-\mathbb{N}$. Then

$$
\begin{array}{rlrl}
l-(l-1) & =1>0 & & {[\text { by theorem I.21 in Apostol }]} \\
\Longrightarrow l>l-1 & & {[\text { by definition of " }>"],}
\end{array}
$$

which contradicts the fact that $l \leq n \forall n \in \mathbb{Z}$. Thus $l \notin \mathbb{Z}-\mathbb{N}$.
Now argue why $l \notin \mathbb{N}$. We conclude, thus, that $l \notin \mathbb{Z}$. So

$$
\begin{aligned}
& l<n \quad \forall n \in \mathbb{Z} \\
\Longrightarrow & l<-n \quad \forall n \in \mathbb{P}
\end{aligned}
$$

$$
\Longrightarrow-l>n \quad \forall n \in \mathbb{P} . \quad[\text { by Theorem I. } 23 \text { in Apostol] }
$$

The last inequality implies that \mathbb{P} has an upper bound in \mathbb{R}, which is false. This contradiction shows that our original assumption must be wrong; hence our claim.

Thus we have shown that \mathbb{Z} is neither bounded below nor bounded above. Now use this and the meanings of "not bounded below" and "not bounded above" to complete the proof.
4. Let \mathbb{F} be an ordered field and let S be a non-empty subset of \mathbb{F}. Propose definitions for:

- a lower bound of S,
- a greatest lower bound of S.

5. Let $\left\{a_{n}\right\} \subset \mathbb{R}$ and let $L \in \mathbb{R}$. How do you express quantitatively the statement, " $\left\{a_{n}\right\}$ does not converge to $L "$?
Sketch of solution: $\exists \epsilon_{0}>0$ such that for each $N \in \mathbb{P}, \exists n(N) \geq N$ such that $\left|a_{n(N)}-L\right| \geq \epsilon_{0}$.
The following problem will go a little beyond what has been taught until now. You will need the results of the lecture of August 23 to solve it.
6. For each of the following sequences, determine whether it converges or diverges. Justify your answer.
a) $\left\{\frac{10^{7} n}{4 n^{2}-4 n+1}\right\}$
b) $\left\{\frac{n^{2}}{n+5}\right\}$
c) $\left\{\left(1+(-1)^{n}\right) / n\right\}$
d) $\left\{\frac{\sqrt{n} \cos (n!) \sin (1 / n!)}{n+1}\right\}$

Tip. In those cases where you think the sequence is divergent, it could be useful to assume that it has the limit L - where L is an arbitrary real number - and arrive at a contradiction.
Sketch of solution: We provide sketches of two of the parts.
b) We intuit that this sequence does not converge. Now note that

$$
\begin{equation*}
a_{n}=\frac{n^{2}}{n+5}>\frac{n^{2}}{2 n}=\frac{n}{2} \quad \forall n>5 . \tag{1}
\end{equation*}
$$

Now assume $\left\{a_{n}\right\}$ has the limit L. Then, $\exists N \in \mathbb{P}$ such that

$$
\begin{aligned}
& \left|a_{n}-L\right|<1 \quad \forall n \geq N \\
& \Longrightarrow a_{n}<1+L \quad \forall n \geq N .
\end{aligned}
$$

Combining this with (1) gives us

$$
\begin{aligned}
\frac{n}{2}<a_{n} & <1+L \\
n & <2(1+L) \quad \forall n \geq \max (5, N)
\end{aligned}
$$

The last statement implies that \mathbb{P} is bounded above; contradiction. Thus $\left\{a_{n}\right\}$ does not converge to L, where L was arbitrarily chosen. Thus, the sequence does not converge.
d) Note that while expressions like $\cos n$! and $\sin 1 / n$! are impossible to compute exactly, these values belong to $[-1,1]$. We can thus estimate

$$
\left|\frac{\sqrt{n} \cos (n!) \sin (1 / n!)}{n+1}\right| \leq \frac{\sqrt{n}}{n+1} \leq \frac{1}{\sqrt{n}} \quad \forall n \in \mathbb{P}
$$

Now argue as in the case of an example worked out in class to conclude that $\lim _{n \rightarrow \infty} a_{n}=0$.

