UMA 101: ANALYSIS \& LINEAR ALGEBRA-I AUTUMN 2023

HINTS/SKETCH OF SOLUTIONS TO HOMEWORK 4 PROBLEMS

Instructor: GAUTAM BHARALI

Assigned: AUGUST 29, 2023

1. Let $\left\{a_{n}\right\}$ be a sequence in \mathbb{R}. We say " $\left\{a_{n}\right\}$ is bounded" if the set $\left\{a_{n}: n=1,2,3, \ldots\right\}$ is bounded above and bounded below. Prove that if $\left\{a_{n}\right\}$ converges, then it is bounded.
Tip. If $\left\{c_{1}, c_{2}, \ldots, c_{N}\right\} \subset \mathbb{R}$ is a finite set, then you may freely use $\max \left\{c_{1}, c_{2}, \ldots, c_{N}\right\}$ - if required - without spelling out its definition (which states exactly what you understood by it in school) or proving that $\max \left\{c_{1}, c_{2}, \ldots, c_{N}\right\}$ exists.
Sketch of solution: As $\left\{a_{n}\right\}$ converges, it has the limit L. By definition, $\exists N \in \mathbb{P}$ and $N \geq 2$ such that

$$
\begin{gather*}
\left|a_{n}-L\right|<1 \\
\Longrightarrow L-1<a_{n}<L+1 \quad \forall n \geq N \tag{1}
\end{gather*}
$$

Write $M:=\max \left\{\left|a_{1}\right|, \ldots,\left|a_{N-1}\right|\right\}$. Then, as $-\left|a_{j}\right| \leq a_{j} \leq\left|a_{j}\right| \forall j$, we have

$$
-M \leq a_{j} \leq M \text { for } j=1, \ldots, N-1
$$

Combining this with (1), we have

$$
\min \{-M, L-1\} \leq a_{n} \leq \max \{M, L+1\} \quad \forall n \in \mathbb{P}
$$

The set $\left\{a_{n}: n=1,2,3, \ldots\right\}$ is bounded above and bounded below. Hence $\left\{a_{n}\right\}$ is bounded.
2. Let $\left\{b_{n}\right\}$ be a sequence in \mathbb{R} that converges to M such that $b_{n} \neq 0$ for every $n=1,2,3, \ldots$. Assume that $M \neq 0$. Prove that the sequence $\left\{1 / b_{n}\right\}$ converges and that $\lim _{n \rightarrow \infty}\left(1 / b_{n}\right)=1 / M$.
Hint. It may helpful to realise that

$$
|M|-\left|b_{n}\right| \leq\left|b_{n}-M\right| \quad \forall n
$$

Use this appropriately when estimating $\left|\left(1 / b_{n}\right)-(1 / M)\right|$.
3. In this problem, you may assume the following without proof:
(i) For each positive real a and $n \in \mathbb{N}-\{0\}$, there exists a unique positive solution of the equation $x^{n}=a$. Denote this number as $a^{1 / n}$. (The existence of $a^{1 / n}$ is a consequence of the l.u.b. property of \mathbb{R}.)
(ii) For $m, n \in \mathbb{N}-\{0\}$ and for any $x \in \mathbb{R}$,

$$
\left(x^{m}\right)^{n}=\left(x^{n}\right)^{m}=x^{m n}
$$

Recall that any positive rational number q is of the form m / n, where $m, n \in \mathbb{N}-\{0\}$. Now, for any real $a>0$, we define

$$
\begin{equation*}
a^{q}:=\left(a^{m}\right)^{1 / n} \tag{2}
\end{equation*}
$$

(a) Show that a^{q}, as given by (2), is well-defined: i.e., if $q=\mu / \nu, \mu, \nu \in \mathbb{N}-\{0\}$ is a different representation of q, then $\left(a^{m}\right)^{1 / n}=\left(a^{\mu}\right)^{1 / \nu}$.
(b) Having defined what a^{q} means, $a>0$ and q a positive rational, prove the following: Let q be a positive rational. Then, the sequence $\left\{1 / n^{q}\right\}$ converges and

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{q}}=0
$$

Sketch of solution: We shall only prove (a) in detail.
a) Let μ / γ and m / n be two representations of q, where $m, n, \mu, \gamma \in \mathbb{N}-\{0\}$. So,

$$
m \gamma=\mu n=: c
$$

Now write $x:=\left(a^{m}\right)^{1 / n}, y:=\left(a^{\mu}\right)^{1 / \gamma}$. Then, by definition,

$$
\begin{equation*}
x^{n}=a^{m} \text { and } y^{\gamma}=a^{\mu} . \tag{3}
\end{equation*}
$$

Therefore, by (3), we get:

$$
x^{n \mu}=\left(x^{n}\right)^{\mu}=\left(a^{m}\right)^{\mu}=a^{m \mu}=\left(a^{\mu}\right)^{m}=\left(y^{\gamma}\right)^{m}=y^{\gamma m} .
$$

From this, we have $x^{c}-y^{c}=0$. By an identity from high-school algebra,

$$
(x-y)\left(\sum_{j=0}^{c-1} x^{j} y^{c-1-j}\right)=0 .
$$

Since $x, y>0$, the above equation implies $(x-y)=0$. By the definitions of x and y,

$$
\left(a^{m}\right)^{1 / n}=\left(a^{\mu}\right)^{1 / \gamma} .
$$

$b)$ The proof of part (b) is very similar to the proof, presented in class, that $\lim _{n \rightarrow \infty} 1 / \sqrt{n}=0$, except for one major additional requirement. This requirement is met by the following
Lemma. Let x, y be positive real numbers. Then, for any $m \in \mathbb{N}-\{0\}, y>x$ if and only if $y^{m}>x^{m}$.
Proof of lemma. Since there is nothing to prove if $m=1$, fix $m \in \mathbb{N}-\{0,1\}$. Then, given that $x, y>0$, we have

$$
\begin{aligned}
y^{m}-x^{m}=(x-y)\left(\sum_{j=0}^{m-1} x^{j} y^{m-1-j}\right)>0 & \Longleftrightarrow y-x>0 \\
& \Longleftrightarrow y>x
\end{aligned}
$$

which establishes the lemma.
The remainder of the solution of part (b) is left to you to complete.
4. Does the sequence $\left\{a_{n}\right\}$, where

$$
a_{n}=\frac{1-(-1)^{n}}{2}, \quad n=1,2,3, \ldots
$$

converge? If so, then what is its limit? Justify your answer.
5. In each case below, show that the series $\sum_{n=1}^{\infty} a_{n}$ converges, and find the sum:
a) $a_{n}=1 /(2 n-1)(2 n+1)$
b) $a_{n}=1 /\left(n^{2}-1\right)$
c) $a_{n}=n /(n+1)(n+2)(n+3)$
d) $a_{n}=(\sqrt{n+1}-\sqrt{n}) / \sqrt{n^{2}+n}$

Sketch of solution: We make a correction to part (b) (which was conveyed via Teams): namely, for part (b), consider the series $\sum_{n=2}^{\infty} a_{n}$.

We shall see a solution of part (a). The solutions of (b) and (c) will follow from similar partialfraction arguments.
a) Let us write, if possible,

$$
\begin{equation*}
\frac{1}{(2 x-1)(2 x+1)}=\frac{A}{2 x-1}+\frac{B}{2 x+1} \quad \forall x \in \mathbb{R}-\{-1 / 2,1 / 2\} \tag{4}
\end{equation*}
$$

Note that

$$
\begin{aligned}
(4) \text { is true } & \Longleftrightarrow A(2 x+1)+B(2 x-1)=1 \quad \forall x \in \mathbb{R} \\
& \Longleftrightarrow\left\{\begin{aligned}
2 A+2 B=0 \\
A-B=1
\end{aligned}\right.
\end{aligned}
$$

by high-school algebra. The linear equation has the unique solution $(A, B)=(1 / 2,-1 / 2)$. It follows that

$$
a_{n}=\frac{1 / 2}{2 n-1}-\frac{1 / 2}{2 n+1}=\frac{1 / 2}{2 n-1}-\frac{1 / 2}{2(n+1)-1}, \quad n=1,2,3, \ldots
$$

Thus, the b_{n} appearing in the convergence theorem for telescoping series is

$$
b_{n}=\frac{1 / 2}{2 n-1}=\frac{1 / 2 n}{2-(1 / n)}, \quad n=1,2,3, \ldots
$$

Since $\lim _{n \rightarrow \infty}(1 / n)=0$, the denominator of the right-hand quotient above has the limit $2 \neq 0$. Thus, by the limit theorem for quotients

$$
\lim _{n \rightarrow \infty} b_{n}=0
$$

Hence, by the convergence theorem

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)(2 n+1)}=b_{1}-\lim _{n \rightarrow \infty} b_{n}=\frac{1}{2}
$$

d) Observe that

$$
\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n^{2}+n}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}, \quad n=1,2,3, \ldots
$$

Thus, the given series is clearly telescoping. Now argue as in the last few sentences of the solution to part (a) to conclude:

$$
\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n^{2}+n}}=1
$$

