UMA 101: ANALYSIS \& LINEAR ALGEBRA - I AUTUMN 2023

HINTS/SKETCH OF SOLUTIONS TO HOMEWORK 6 PROBLEMS
Instructor: GAUTAM BHARALI
Assigned: SEPTEMBER 12, 2023

PLEASE NOTE: Only in rare circumstances will complete solutions be provided!

- What follows are hints for solving a problem or sketches of the solutions meant to help you through the difficult parts (or, sometimes, to introduce a nice trick). You are encouraged to use these to obtain complete solutions.
- Hints/solution-sketches will be provided for approximately half the problems in an assignment.

1. Fix some positive integer N. Show that the series $\sum_{n=1}^{\infty} a_{n}$ is convergent if and only if the series $\sum_{n=N}^{\infty} a_{n}$ is convergent.
2. Let p be a real number contained in an open interval I. Let f be a \mathbb{R}-valued function such that $f(x)$ is defined at each $x \in I$ except perhaps at $x=p$. Let $A \in \mathbb{R}$. How do you express quantitatively (involving parameters like ε, etc., in an appropriate way) the statement, " $f(x)$ does not have the limit A as x approaches $p "$?
Solution: $\exists \epsilon>0$ such that for each $\delta>0, \exists x_{\delta}$ (which depends on δ) in I such that $0<\left|x_{\delta}-p\right|<\delta$ and $\left|f\left(x_{\delta}\right)-A\right| \geq \epsilon$.
3. Let p be a real number contained in an open interval I. Let f, g be \mathbb{R}-valued functions such that $f(x)$ and $g(x)$ are defined at each $x \in I$ except perhaps at $x=p$. Suppose $\lim _{x \rightarrow p} f(x)=A$ and $\lim _{x \rightarrow p} g(x)=B$. Prove using the " $\varepsilon-\delta$ definition" that

$$
\lim _{x \rightarrow p} f(x) g(x)=A B
$$

directly without first assuming - as has been done in the textbook - that either A or B equals 0
4. Show that

$$
\lim _{x \rightarrow 0} \frac{\sin (6 x)-\sin (5 x)}{x}
$$

exists. Give justifications in terms of the limit theorems that are used.
Note. You may use standard trigonometric identities learnt in high school without deriving them.
Sketch of solution: Everyone knows how to compute this limit! The novelty lies in arguing correctly that the stated limit exists.

We compute:

$$
\frac{\sin (6 x)}{x}=6 \frac{\sin (6 x)}{6 x}=6 \frac{\sin y}{y} . \quad[\text { writing } y:=6 x]
$$

Since, for any sequence $\left\{y_{n}\right\} \subset \mathbb{R}-\{0\}$ with $\lim _{n \rightarrow \infty} y_{n}=0$, each y_{n} can be expressed as $y_{n}=6 x_{n}$ (i.e., $x_{n}=y_{n} / 6$) such that $\left\{x_{n}\right\} \subset \mathbb{R}-\{0\}$ with $\lim _{n \rightarrow \infty} x_{n}=0$, by definition, and appealing to a standard limit, the above gives:

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{\sin (6 x)}{x}=\lim _{y \rightarrow 0} 6 \frac{\sin y}{y}=6 \tag{1}
\end{equation*}
$$

By an exactly similar argument,

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{\sin (5 x)}{x}=5 \tag{2}
\end{equation*}
$$

From (1), (2), and the theorem on limits of algebraic combinations of functions:

$$
\lim _{x \rightarrow 0} \frac{\sin (6 x)-\sin (5 x)}{x}=1 .
$$

5. Let n be some (fixed) positive integer and let $p \in \mathbb{R}$. Complete the following outline to show that $\lim _{x \rightarrow p} x^{n}=p^{n}$ using only the " $\varepsilon-\delta$ definition" (i.e., without using the limit theorem stated in Problem 3 above):
(a) Establish the desired limit for the case $n=1$ using the " $\varepsilon-\delta$ definition".
(b) Now, use Part (a) appropriately to establish the stated limit.
6. Show, using any of the theorems on the algebra of limits, that the limit

$$
\lim _{x \rightarrow 0} \frac{1-\sqrt{1-x^{2}}}{x^{2}}
$$

exists.
Sketch of solution: We first establish that $\lim _{x \rightarrow 0} \sqrt{1-x^{2}}$ exists (we intuit here that this limit does exist and equals 1). To this end, fix $\epsilon>0$. We compute:

$$
\begin{align*}
\left|\sqrt{1-x^{2}}-1\right| & =\frac{\left|\left(\sqrt{1-x^{2}}-1\right)\left(\sqrt{1-x^{2}}+1\right)\right|}{\sqrt{1-x^{2}}+1} \\
& =\frac{x^{2}}{\sqrt{1-x^{2}}+1} \leq x^{2} \tag{3}
\end{align*}
$$

for all x in the domain of $\sqrt{1-x^{2}}$. Now, write $I=(-1,1)$ and $\delta:=\sqrt{\epsilon}>0$. Then, by (3),

$$
\left|\sqrt{1-x^{2}}-1\right| \leq x^{2}<\delta^{2}=\epsilon
$$

whenever $0<|x-0|<\delta$ and $x \in I$. As $\epsilon>0$ was arbitrary, we conclude that

$$
\lim _{x \rightarrow 0} \sqrt{1-x^{2}}=1
$$

Finally, we compute

$$
\begin{aligned}
\frac{1-\sqrt{1-x^{2}}}{x^{2}} & =\frac{\left(1-\sqrt{1-x^{2}}\right)\left(1+\sqrt{1-x^{2}}\right)}{x^{2}\left(1+\sqrt{1-x^{2}}\right)} \\
& =\frac{1}{1+\sqrt{1-x^{2}}} .
\end{aligned}
$$

By the fact that $\lim _{x \rightarrow 0} \sqrt{1-x^{2}}=1$, the theorem on the algebraic combination of functions, and the fact that the limit of the denominator above $\neq 0$, it follows that

$$
\lim _{x \rightarrow 0} \frac{1-\sqrt{1-x^{2}}}{x^{2}}=\frac{1}{2}
$$

