UMA 101: ANALYSIS \& LINEAR ALGEBRA-I AUTUMN 2023

HINTS/SKETCH OF SOLUTIONS TO HOMEWORK 8 PROBLEMS

Instructor: GAUTAM BHARALI
Assigned: OCTOBER 10, 2023

1. Let $I \subseteq \mathbb{R}$ be an interval, $f: I \rightarrow \mathbb{R}$, and let $p \in I$. Let $\left\{a_{n}\right\} \subset I$ be a sequence such that $\lim _{n \rightarrow \infty} a_{n}=p$. Suppose f is continuous at p. Then, prove that $\left\{f\left(a_{n}\right)\right\}$ is a convergent sequence and $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(p)$.
Remark. The above result provides yet another method of constructing new convergent sequences from known convergent sequences.
Sketch of solution: Since $\left\{a_{n}\right\}$ is, in general, a sequence in I and not merely in $I-\{p\}$, one cannot directly appeal to the sequential definition of the limit $\lim _{x \rightarrow p} f(x)$. Then, the slickest argument is the one from first principles. Fix $\epsilon>0$. By definition, $\exists \delta>0$ such that

$$
\begin{equation*}
|f(x)-f(p)|<\epsilon \text { whenever } x \in I \text { and }|x-p|<\delta \tag{1}
\end{equation*}
$$

As $\lim _{n \rightarrow \infty} a_{n}=p$, there exists $N \in \mathbb{P}$ such that

$$
\left|a_{n}-p\right|<\delta \quad \forall n \geq N
$$

Since every $a_{n} \in I$, combining the last inequality with (1) implies

$$
\left|f\left(a_{n}\right)-f(p)\right|<\epsilon \forall n \geq N
$$

Since $\epsilon>0$ was arbitrary, we conclude $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(p)$.
2. Fix a number $p \in \mathbb{R}$. Let θ denote an arbitrary real number. We showed in class that

$$
|\sin (\theta+p)-\sin (p)| \leq|\sin \theta|+2 \sin ^{2}\left(\frac{\theta}{2}\right)
$$

From this, deduce that the sine function is continuous at p. You may freely use without proof the fact that $|\sin \theta| \leq|\theta| \forall \theta \in \mathbb{R}$ (the easiest proof of which you know from Euclidean geometry).

3-6. Solve Problems 7-10 in Section 3.8 of Apostol's book.
Sketch of solution: Let us consider those compositions $f \circ g=: h$ where we have to be careful. Of concern, then, is Problem 8, since range $(g) \nsubseteq\{x \in \mathbb{R}: x \geq 0\}=\operatorname{dom}(f)$. Thus $\operatorname{dom}(h)=: S$ is such that

$$
\begin{aligned}
\operatorname{range}\left(\left.g\right|_{S}\right) & =\{x \in \mathbb{R}: x \geq 0\} \\
\Longrightarrow S & =\{x \in \mathbb{R}: \sin x \geq 0\} \\
\Longrightarrow S & =\bigcup_{n \in \mathbb{Z}}[2 n \pi,(2 n+1) \pi]
\end{aligned}
$$

Thus, we have:

$$
h(x)=\sqrt{\sin x} \quad \forall x \in \bigcup_{n \in \mathbb{Z}}[2 n \pi,(2 n+1) \pi]
$$

We do not have to worry about the domain of h in Problem 10, but just for students to compare answers with, h is given as

$$
h(x)=\sqrt{x+\sqrt{x}+\sqrt{x+\sqrt{x}}} \quad \forall x>0 .
$$

7. Let $a<b<c \in \mathbb{R}$. Suppose $g:[a, b] \rightarrow \mathbb{R}$ and $h:[b, c] \rightarrow \mathbb{R}$ are two continuous functions. You are given that $g(b)=h(b)$. Define the function

$$
f(x)= \begin{cases}g(x), & \text { if } a \leq x \leq b, \\ h(x), & \text { if } b \leq x \leq c\end{cases}
$$

Use the $\varepsilon-\delta$ definition of continuity to show that f is continuous on $[a, c]$.
Note. From the sequential definition of continuity, it is almost immediate that f is continuous! The aim of this problem is to get you to work with the $\varepsilon-\delta$ definition.
Sketch of solution: Since $f(x)=g(x) \forall x \in[a, b)$ and g is continuous, f is continuous at each $p \in[a, b)$. By an analogous argument, f is continuous at each $p \in(b, c]$. We just need to test for continuity at $x=b$. To this end, fix $\epsilon>0$. By hypothesis, $\exists \delta_{1}, \delta_{2}>0$ such that

$$
\begin{aligned}
& |g(x)-g(b)|<\epsilon \text { whenever } x \in[a, b] \text { and }|x-b|<\delta_{1}, \\
& |h(x)-h(b)|<\epsilon \text { whenever } x \in[b, c] \text { and }|x-b|<\delta_{2} .
\end{aligned}
$$

Since $h(b)=g(b)=: f(b)$, if we write $\delta=\min \left(\delta_{1}, \delta_{2}\right)$, by the definition of f, the last two inequalities imply:

$$
|f(x)-f(b)|<\epsilon \text { whenever } x \in[a, c] \text { and }|x-b|<\delta
$$

Thus, f is continuous at $x=b$ also.
8. Show that the equation

$$
x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0
$$

where $a_{0}, a_{1}, \ldots, a_{n-1}$ are real numbers, has at least one root in \mathbb{R} if n is odd.
9. Show that the equation $\sin x=x-1$ has at least one real solution.

Sketch of solution: Write $f(x):=\sin x-x+1$. Observe

$$
\begin{aligned}
f(\pi) & =\sin (\pi)-\pi+1=-\pi+1<0 \\
f(-\pi) & =\sin (-\pi)+\pi+1=\pi+1>0 .
\end{aligned}
$$

By Bolzano's Theorem (or Intermediate Value Theorem), $\exists c \in(-\pi, \pi)$ such that $f(c)=0$. Thus c is, by definition, a solution of the equation $\sin x=x-1$.
10. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as follows:

$$
f(x)= \begin{cases}\sin x, & \text { if } x \leq c \\ a x+b, & \text { if } x>c\end{cases}
$$

where a, b, c are real constants. Suppose a and b are fixed. Find all possible values of c such that f is continuous at $x=c$. You may use any result in this assignment sheet that may be relevant to solving this problem.

