UMA 101 : ANALYSIS \& LINEAR ALGEBRA - I
 AUTUMN 2023
 HOMEWORK 10

Instructor: GAUTAM BHARALI
Assigned: OCTOBER 25, 2023

1. Consider the following:

Theorem. Let $I \subseteq \mathbb{R}$ be a non-empty open interval, $f: I \rightarrow \mathbb{R}$ a one-one function, and let $a \in I$. Suppose f is continuous and that f is differentiable at a. Moreover, assume that $f^{\prime}(a) \neq 0$. Then:
(i) $f(I)$ is an open interval.
(ii) f^{-1} is differentiable at $f(a)$ and

$$
\left(f^{-1}\right)^{\prime}(f(a))=1 / f^{\prime}(a) .
$$

Keeping in mind the discussion in class, give a proof - using the sequential definition of limits of functions - of part (ii).
2. Let $I \subseteq \mathbb{R}$ be a non-empty open interval and let $f: I \rightarrow \mathbb{R}$ be a one-one function. Assume that f is bounded and continuous on I. Show that $f(I)$ is an open interval.
Remark. The above is a proof, for a special case, of part (i) of Problem 1. The general result is somewhat annoying to prove using only the techniques presented in this course.
3. This problem recapitulates the discussion in class - leading to the computation of the derivative of $\sin ^{-1}$ - for the function $\cos ^{-1}$.
a) Write down all the closed intervals $I \varsubsetneqq \mathbb{R}$ of length π such that $\left.\cos \right|_{I}$ is invertible.
b) Define the function $\cos ^{-1}$ as follows:

$$
\cos ^{-1}:=\text { the inverse of the function }\left.\cos \right|_{[0, \pi]} .
$$

(This function is also denoted by arccos.) Show that $\cos ^{-1}$ is differentiable on $(-1,1)$ and that

$$
\left(\cos ^{-1}\right)^{\prime}(x)=-\frac{1}{\sqrt{1-x^{2}}} \quad \forall x \in(-1,1)
$$

4. Fix $n \in \mathbb{N}-\{0,1\}$ and define $g_{n}(y):=y^{1 / n}$ for each $y \in[0, \infty)$. Using the fact that $g_{n}=$ $\left(\left.f_{n}\right|_{[0, \infty)}\right)^{-1}$ - where $f_{n}(x)=x^{n}$ for each $x \in \mathbb{R}$-show that g_{n} is differentiable on $(0, \infty)$ and compute $\left(g_{n}\right)^{\prime}$.
5. Let $a_{1}, a_{2}, \ldots, a_{n}$ be n distinct real numbers. Let

$$
f(x)=\sum_{j=1}^{n}\left(x-a_{j}\right)^{2}, \quad x \in \mathbb{R}
$$

Show that the least value of f is obtained at the arithmetic mean of a_{1}, \ldots, a_{n}.
6. Let $a<b$ be real numbers and let $s, t:[a, b] \rightarrow \mathbb{R}$ be two simple functions. Go through the following outline to show that $s+t$ is also a simple function.
(a) Let

$$
\begin{aligned}
& \mathcal{P}_{1}: a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b, \\
& \mathcal{P}_{2}: a=y_{0}<y_{1}<y_{2}<\cdots<y_{m}=b
\end{aligned}
$$

be partitions that determine s and t, respectively. Consider the partition $\mathcal{P}_{1} \cup \mathcal{P}_{2}$ (which is called the common refinement of \mathcal{P}_{1} and \mathcal{P}_{1}), and denote it as

$$
\mathcal{P}_{1} \cup \mathcal{P}_{2}: a=z_{0}<z_{1}<z_{2}<\cdots<z_{N}=b .
$$

Fix an index l such that $1 \leq l \leq N$. You may assume without proof (the proof is annoying, involving the consideration of several cases) that there exist unique integers $i(l), j(l), 1 \leq$ $i(l) \leq n$ and $1 \leq j(l) \leq m$ such that

$$
\left(z_{l-1}, z_{l}\right)=\left(x_{i(l)-1}, x_{i(l)}\right) \cap\left(y_{j(l)-1}, y_{j(l)}\right) .
$$

(b) Let $\sigma_{1}, \ldots, \sigma_{n}$ be the values taken by s on the open sub-intervals given by \mathcal{P}_{1} and $\tau_{1}, \ldots \tau_{m}$ be the values taken by t on the open sub-intervals given by \mathcal{P}_{2}. Use Part (a) and the latter information to show that $s+t$ is also a step function.
7. Solve parts $(c)-(f)$ of Problem 1 of Section 1.15 of Apostol.
8. Compute the integrals $\int_{0}^{3}\left[x^{2}\right] d x$ and $\int_{0}^{9}[\sqrt{x}] d x$. (Exactly as encountered in the previous problem, given $x \in \mathbb{R},[x]$ denotes the greatest integer $\leq x$.)

