UMA 101 : ANALYSIS & LINEAR ALGEBRA – I AUTUMN 2023 HOMEWORK 11

Instructor: GAUTAM BHARALI

Assigned: OCTOBER 31, 2023

- **1.** Let a < b be real numbers and let $s : [a, b] \to \mathbb{R}$ be a step function.
 - a) Prove that s is integrable according to the abstract definition given in terms of upper and the lower integrals (i.e., that s is *Riemann integrable*).
 - b) You have been given a **formula** for the integral of a step function on [a, b]. Show that the value of the integral of s given by the above-mentioned definition agrees with that given by the formula.
- **2.** Let a < b be real numbers and let $s : [a, b] \to \mathbb{R}$ be a step function. Let $c \in \mathbb{R}$. Show that

$$\int_a^b s(x) \, dx = \int_{a+c}^{b+c} s(x-c) \, dx$$

Tip. In this case, it is clearly most efficient to work with the **formula** defining the integral of a step function.

3. Let f be a function defined on an interval [-A, A], A > 0, and suppose $f|_{[0,A]}$ is Riemann integrable. Suppose f is an even function (i.e., f(x) = f(-x) for any $x \in [-A, A]$). Prove that f is integrable and show that

$$\int_{-A}^{A} f(x)dx = 2\int_{0}^{A} f(x)dx.$$

4. Fix r > 0 and define the non-negative function $f: [-r, r] \to \mathbb{R}$ as follows:

$$f(x) := \sqrt{r^2 - x^2}, \quad -r \le x \le r.$$

Assuming that $f \in \mathscr{R}[-r,r]$, what do you **expect** the value of $\int_{-r}^{r} f(x) dx$ to be? You are not being asked to provide a calculation or a rigorous argument; guess the expected answer and give a reason for this guess based on the motivation for the Riemann integral.

5. Let a < b be real numbers and let $f : [a, b] \to \mathbb{R}$ be Riemann integrable on [a, b]. Show that for any $c, d \in \mathbb{R}$ such that $a \le c < d \le b$, $f|_{[c,d]}$ is Riemann integrable on [c, d].