UMA 101: ANALYSIS \& LINEAR ALGEBRA - I
 AUTUMN 2023
 HOMEWORK 12

1. Let $a<b \in \mathbb{R}$ and let $f \in \mathscr{R}[a, b]$ be a step function. Let $c \in(a, b)$. Show that

$$
\left.f\right|_{[a, c]} \in \mathscr{R}[a, c] \quad \text { and }\left.f\right|_{[c, b]} \in \mathscr{R}[c, b],
$$

and that

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x .
$$

Note. The first part of this problem is already established by Problem 5 of Homework 11.
2. Self-study. Read the statement of the Small-span Theorem (i.e., Theorem 3.13) in Apostol's book. Next, study the proof of the fact that if $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then f is Riemann integrable on $[a, b]$ (i.e., Theorem 3.14 in Apostol's book).
3. Let $a<b \in \mathbb{R}$. Use the fact that if a function $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then it is uniformly continuous, to give a short proof of the Small-span Theorem.
4. Let $a<b \in \mathbb{R}$ and let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. The following discussion shows why $\underline{I}(f)$ and $\bar{I}(f)$ are called the "lower integral" and the "upper integral", respectively, of f.
a) Show that for any step function $s_{1}:[a, b] \rightarrow \mathbb{R}$ such that $s_{1} \leq f$ and any step function $s_{2}:[a, b] \rightarrow \mathbb{R}$ such that $s_{2} \geq f$,

$$
\int_{a}^{b} s_{1}(x) d x \leq \int_{a}^{b} s_{2}(x) d x
$$

b) Now deduce that $\underline{I}(f) \leq \bar{I}(f)$.
5. Show that the function $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$, given by $f_{n}(x):=x^{n}$, is not uniformly continuous for $n \in \mathbb{N}-\{0,1\}$.
6. You are given a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is continuous and satisfies

$$
\int_{0}^{x} f(t) d t=1+x^{2}+x \sin (2 x) \quad \forall x \in \mathbb{R}
$$

Compute $f(\pi / 4)$.
7-8. Solve Problems 17 and 22 from Section 5.5 of Apostol.
9. Recall the definition of the natural logarithm $\log :(0, \infty) \rightarrow(0, \infty)$ introduced in class.
a) Prove that \log is strictly increasing.
b) Assume without proof that the range of \log is \mathbb{R}. Thus, $E:=\log ^{-1}$ is a function defined on \mathbb{R}. E is called the exponential function; recall that we frequently write $e^{x}:=E(x)$ for $x \in \mathbb{R}$. With this notation, prove that

$$
e^{x} e^{y}=e^{x+y} \quad \forall x, y \in \mathbb{R}
$$

10. Based on our discussion on the Leibnizian notation and the meaning of the left-hand side below, justify the equation:

$$
\int \frac{1}{x} d x=\log |x|+C
$$

