UMA 101: ANALYSIS \& LINEAR ALGEBRA-I
 AUTUMN 2023
 HOMEWORK 13

1. Consider the function $f:[0,1] \rightarrow \mathbb{R}$ defined as

$$
f(x):= \begin{cases}0, & \text { if } x \in[0,1] \cap \mathbb{Q} \\ 1, & \text { if } x \in[0,1]-\mathbb{Q}\end{cases}
$$

Show that f is not in $\mathscr{R}[0,1]$.
2. Let $E: \mathbb{R} \rightarrow(0,+\infty)$ denote the exponential function defined in Homework 12 (recall that the familiar notation for this function is related to E by setting $e^{x}:=E(x)$ for every $\left.x \in \mathbb{R}\right)$. Prove that E is differentiable and compute, with justifications, $E^{\prime}(x)$.
3. The following problem is related to the proof of the statement that if V is a vector space over a field \mathbb{F} and $S \subseteq V$ is a non-empty subset that obeys the closure laws with respect to addition and scalar multiplication, then S contains a zero vector. Show that:

For S as above and $\overline{0}$ being a zero vector of $\boldsymbol{V}, 0 x=\overline{0}$ irrespective of $x \in S$.
4. Let S be some non-empty set and let \mathbb{F} denote either \mathbb{R} or \mathbb{C}. Let $V_{S}(\mathbb{F})$ denote the set of of all \mathbb{F}-valued functions on S. For any $f, g \in V_{S}(\mathbb{F})$ and any $c \in \mathbb{F}$, define

$$
\begin{aligned}
(f+g)(x) & :=f(x)+g(x) \forall x \in S \\
(c f)(x) & :=c f(x) \forall x \in S
\end{aligned}
$$

Show that $V_{S}(\mathbb{F})$ is a vector space over \mathbb{F}.
5. Freely using - without proof - what you know about 3-D coordinate geometry from high school, prove that any plane in \mathbb{R}^{3} containing the origin $(0,0,0)$ is a subspace of \mathbb{R}^{3}.
6. Consider the set $S=\left\{e^{a x}, x e^{a x}\right\}$, where $a \in \mathbb{R}-\{0\}$, viewed as a subset of $V_{\mathbb{R}}(\mathbb{R})$ as defined in Problem 4. Prove that S is a basis of $L(S)$.
7. Problem 7 from Section 15.9 in Apostol's book.
8. Let $V_{\mathbb{R}}(\mathbb{R})$ be as defined in Problem 4. Find the dimension of $L(S), S \subset V_{\mathbb{R}}(\mathbb{R})$, where
a) $S=\left\{e^{x} \cos x, e^{x} \sin x\right\}$,
b) $S=\left\{1, \cos 2 x, \cos ^{2} x, \sin ^{2} x\right\}$.

