UMA 101 : ANALYSIS & LINEAR ALGEBRA – I AUTUMN 2023 HOMEWORK 13

Instructor: GAUTAM BHARALI

Assigned: NOVEMBER 14, 2023

1. Consider the function $f:[0,1] \to \mathbb{R}$ defined as

$$f(x) := \begin{cases} 0, & \text{if } x \in [0,1] \cap \mathbb{Q}, \\ 1, & \text{if } x \in [0,1] - \mathbb{Q}. \end{cases}$$

Show that f is **not** in $\mathscr{R}[0,1]$.

2. Let $E : \mathbb{R} \to (0, +\infty)$ denote the *exponential function* defined in Homework 12 (recall that the familiar notation for this function is related to E by setting $e^x := E(x)$ for every $x \in \mathbb{R}$). Prove that E is differentiable and compute, with justifications, E'(x).

3. The following problem is related to the proof of the statement that if V is a vector space over a field \mathbb{F} and $S \subseteq V$ is a non-empty subset that obeys the closure laws with respect to addition and scalar multiplication, then S contains a zero vector. Show that:

For S as above and $\overline{0}$ being a zero vector of V, $0x = \overline{0}$ irrespective of $x \in S$.

4. Let S be some non-empty set and let \mathbb{F} denote either \mathbb{R} or \mathbb{C} . Let $V_S(\mathbb{F})$ denote the set of all \mathbb{F} -valued functions on S. For any $f, g \in V_S(\mathbb{F})$ and any $c \in \mathbb{F}$, define

$$(f+g)(x) := f(x) + g(x) \quad \forall x \in S,$$

$$(cf)(x) := cf(x) \quad \forall x \in S.$$

Show that $V_S(\mathbb{F})$ is a vector space over \mathbb{F} .

5. Freely using — without proof — what you know about 3-D coordinate geometry from high school, prove that any plane in \mathbb{R}^3 containing the origin (0, 0, 0) is a subspace of \mathbb{R}^3 .

6. Consider the set $S = \{e^{ax}, xe^{ax}\}$, where $a \in \mathbb{R} - \{0\}$, viewed as a subset of $V_{\mathbb{R}}(\mathbb{R})$ as defined in Problem 4. Prove that S is a basis of L(S).

7. Problem 7 from Section 15.9 in Apostol's book.

8. Let $V_{\mathbb{R}}(\mathbb{R})$ be as defined in Problem 4. Find the dimension of $L(S), S \subset V_{\mathbb{R}}(\mathbb{R})$, where

- a) $S = \{e^x \cos x, e^x \sin x\},\$
- b) $S = \{1, \cos 2x, \cos^2 x, \sin^2 x\}.$