UMA 101 : ANALYSIS \& LINEAR ALGEBRA - I
 AUTUMN 2023
 HOMEWORK 2

Instructor: GAUTAM BHARALI

Assigned: AUGUST 15, 2023

1. Peano multiplication is given by the following two rules:

$$
\begin{aligned}
n \cdot 0 & :=0, \\
n \cdot S(m) & :=(n \cdot m)+n \quad \forall m, n \in \mathbb{N} .
\end{aligned}
$$

Strictly speaking, this leaves some work to be done to show that multiplication is defined between every pair of natural numbers. Hence, show that the rules of Peano multiplication give us the value of $n \cdot m$ for all $m, n \in \mathbb{N}$.

The following notation applies to the next two problems. Define the set

$$
A_{n}:=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \ldots, \overline{n-1}\}
$$

where $n \in \mathbb{N}-\{0,1\}$. We define the two operations + and \cdot on A_{n} as follows:

$$
\begin{equation*}
\bar{a}+\bar{b}:=\bar{c}, \quad \bar{a} \times \bar{b}:=\bar{d}, \tag{1}
\end{equation*}
$$

where c and d are obtained as follows:

$$
\begin{aligned}
& c=\text { the remainder obtained when dividing }(a+b) \text { by } n, \\
& d=\text { the remainder obtained when dividing }(a \cdot b) \text { by } n \text {. }
\end{aligned}
$$

(The operations between the unbarred variables a and b above are the usual/Peano addition and multiplication between natural numbers.) Note that the rules for + and \cdot in A_{n} depend on the n considered.
2. Show that $\left(A_{2},+, \cdot\right)$ is a field.
3. Is $\left(A_{6},+, \cdot\right)$ a field? Justifiy your answer.

The next two problems are devoted to showing that many statements that we take for granted about \mathbb{R} require proofs based on \mathbb{R} being an ordered field. While \mathbb{R} has just been introduced, these problems will rely on the first thing to be presented on August 16: i.e., that Apostol's treatment of \mathbb{R} is one where its existence and well-definedness are taken to be axioms: namely, Axioms 1-9 in Apostol, Sections I-3.2 and I-3.4.
4. (a part of Apostol, I-3.5, Prob.1) Using only the field axioms and the order axioms for \mathbb{R}, prove the following:
Theorem. Let $a, b, c \in \mathbb{R}$. If $a<b$ and $c<0$, then $a c>b c$.
5. (Apostol, I-3.5, Prob. 2) Using only the field axioms and the order axioms for \mathbb{R}, show that there is no real number x such that $x^{2}+1=0$.

Note. You may freely use without proof any of Theorems I.17-I. 25 in Apostol, Section I-3.4, without proof.

