UMA 101 : ANALYSIS & LINEAR ALGEBRA – I AUTUMN 2023 HOMEWORK 2

Instructor: GAUTAM BHARALI

Assigned: AUGUST 15, 2023

1. Peano multiplication is given by the following two rules:

$$\begin{aligned} n \cdot 0 &:= 0, \\ n \cdot S(m) &:= (n \cdot m) + n \quad \forall m, n \in \mathbb{N}. \end{aligned}$$

Strictly speaking, this leaves some work to be done to show that multiplication is defined between **every** pair of natural numbers. Hence, show that the rules of Peano multiplication give us the value of $n \cdot m$ for all $m, n \in \mathbb{N}$.

The following notation applies to the next two problems. Define the set

$$A_n := \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \dots, \overline{n-1}\}$$

where $n \in \mathbb{N} - \{0, 1\}$. We define the two operations + and \cdot on A_n as follows:

$$\overline{a} + \overline{b} := \overline{c}, \qquad \overline{a} \times \overline{b} := \overline{d}, \tag{1}$$

where c and d are obtained as follows:

c = the remainder obtained when dividing (a + b) by n, d = the remainder obtained when dividing $(a \cdot b)$ by n.

(The operations between the unbarred variables a and b above are the usual/Peano addition and multiplication between natural numbers.) Note that the rules for + and \cdot in A_n depend on the n considered.

2. Show that $(A_2, +, \cdot)$ is a field.

3. Is $(A_6, +, \cdot)$ a field? Justify your answer.

The next two problems are devoted to showing that many statements that we take for granted about \mathbb{R} require **proofs** based on \mathbb{R} being an ordered field. While \mathbb{R} has just been introduced, these problems will rely on the **first thing to be presented on August 16:** i.e., that Apostol's treatment of \mathbb{R} is one where its existence and well-definedness are taken to be axioms: namely, **Axioms 1–9** in Apostol, Sections I-3.2 and I-3.4.

4. (a part of Apostol, I-3.5, Prob. 1) Using **only** the field axioms and the order axioms for \mathbb{R} , prove the following:

Theorem. Let $a, b, c \in \mathbb{R}$. If a < b and c < 0, then ac > bc.

5. (Apostol, I-3.5, Prob. 2) Using **only** the field axioms and the order axioms for \mathbb{R} , show that there is no real number x such that $x^2 + 1 = 0$.

Note. You may freely use without proof any of Theorems I.17–I.25 in Apostol, Section I-3.4, without proof.