UMA 101 : ANALYSIS & LINEAR ALGEBRA – I AUTUMN 2023 HOMEWORK 3

Instructor: GAUTAM BHARALI

Assigned: AUGUST 22, 2023

1. Prove the following: Let T(m) denote a statement involving $m \in \mathbb{N}$. If T(1) is true, and T(S(m)) is true whenever T(m) is true, then T(m) is true for all m in $\mathbb{N} - \{0\}$.

Remark. You saw the above statement in connection with Quiz 1 as something that you could assume. You are now asked to prove it.

2. Let \mathbb{F} be an ordered field and let S be a non-empty subset of \mathbb{F} . Show that if S has a least upper bound in \mathbb{F} , then it is unique.

Remark. With S as above, its unique least upper bound is also referred to by a shorter word: the *supremum* of S, denoted by sup S.

3. (Apostol, I-3.12, Prob. 2) Let x be an arbitrary real number. Show that there exist integers m and n such that m < x < n.

Clarification. The set of integers is the set $\mathbb{N} \cup \{-n : n \in \mathbb{P}\}$, where -n is the negative of n viewed as an element of \mathbb{R} .

Hint. It can useful to consider Theorem I.28 in Apostol.

- **4.** Let \mathbb{F} be an ordered field and let S be a non-empty subset of \mathbb{F} . Propose definitions for:
 - a lower bound of S,
 - a greatest lower bound of S.

5. Let $\{a_n\} \subset \mathbb{R}$ and let $L \in \mathbb{R}$. How do you express quantitatively the statement, " $\{a_n\}$ does not converge to L"?

The following problem will go a little beyond what has been taught until now. You will need the results of the **lecture of August 23** to solve it.

6. For each of the following sequences, determine whether it converges or diverges. Justify your answer.

a)
$$\left\{ \frac{10^7 n}{4n^2 - 4n + 1} \right\}$$

b) $\left\{ \frac{n^2}{n + 5} \right\}$
c) $\{ (1 + (-1)^n)/n \}$
d) $\left\{ \frac{\sqrt{n} \cos(n!) \sin(1/n!)}{n + 1} \right\}$

Tip. In those cases where you think the sequence is divergent, it could be useful to **assume** that it has the limit L—where L is an arbitrary real number—and arrive at a contradiction.