UMA 101: ANALYSIS \& LINEAR ALGEBRA-I
 AUTUMN 2023
 HOMEWORK 3

Instructor: GAUTAM BHARALI

Assigned: AUGUST 22, 2023

1. Prove the following: Let $T(m)$ denote a statement involving $m \in \mathbb{N}$. If $T(1)$ is true, and $T(S(m))$ is true whenever $T(m)$ is true, then $T(m)$ is true for all m in $\mathbb{N}-\{0\}$.
Remark. You saw the above statement in connection with Quiz 1 as something that you could assume. You are now asked to prove it.
2. Let \mathbb{F} be an ordered field and let S be a non-empty subset of \mathbb{F}. Show that if S has a least upper bound in \mathbb{F}, then it is unique.
Remark. With S as above, its unique least upper bound is also referred to by a shorter word: the supremum of S, denoted by $\sup S$.
3. (Apostol, I-3.12, Prob. 2) Let x be an arbitrary real number. Show that there exist integers m and n such that $m<x<n$.
Clarification. The set of integers is the set $\mathbb{N} \cup\{-n: n \in \mathbb{P}\}$, where $-n$ is the negative of n viewed as an element of \mathbb{R}.
Hint. It can useful to consider Theorem I. 28 in Apostol.
4. Let \mathbb{F} be an ordered field and let S be a non-empty subset of \mathbb{F}. Propose definitions for:

- a lower bound of S,
- a greatest lower bound of S.

5. Let $\left\{a_{n}\right\} \subset \mathbb{R}$ and let $L \in \mathbb{R}$. How do you express quantitatively the statement, " $\left\{a_{n}\right\}$ does not converge to $L "$?

The following problem will go a little beyond what has been taught until now. You will need the results of the lecture of August 23 to solve it.
6. For each of the following sequences, determine whether it converges or diverges. Justify your answer.
a) $\left\{\frac{10^{7} n}{4 n^{2}-4 n+1}\right\}$
b) $\left\{\frac{n^{2}}{n+5}\right\}$
c) $\left\{\left(1+(-1)^{n}\right) / n\right\}$
d) $\left\{\frac{\sqrt{n} \cos (n!) \sin (1 / n!)}{n+1}\right\}$

Tip. In those cases where you think the sequence is divergent, it could be useful to assume that it has the limit L - where L is an arbitrary real number - and arrive at a contradiction.

