UMA 101: ANALYSIS \& LINEAR ALGEBRA-I
 AUTUMN 2023
 HOMEWORK 4

1. Let $\left\{a_{n}\right\}$ be a sequence in \mathbb{R}. We say " $\left\{a_{n}\right\}$ is bounded" if the set $\left\{a_{n}: n=1,2,3, \ldots\right\}$ is bounded above and bounded below. Prove that if $\left\{a_{n}\right\}$ converges, then it is bounded.
Tip. If $\left\{c_{1}, c_{2}, \ldots, c_{N}\right\} \subset \mathbb{R}$ is a finite set, then you may freely use $\max \left\{c_{1}, c_{2}, \ldots, c_{N}\right\}$-if required - without spelling out its definition (which states exactly what you understood by it in school) or proving that $\max \left\{c_{1}, c_{2}, \ldots, c_{N}\right\}$ exists.
2. Let $\left\{b_{n}\right\}$ be a sequence in \mathbb{R} that converges to M such that $b_{n} \neq 0$ for every $n=1,2,3, \ldots$. Assume that $M \neq 0$. Prove that the sequence $\left\{1 / b_{n}\right\}$ converges and that $\lim _{n \rightarrow \infty}\left(1 / b_{n}\right)=1 / M$.
Hint. It may helpful to realise that

$$
|M|-\left|b_{n}\right| \leq\left|b_{n}-M\right| \quad \forall n .
$$

Use this appropriately when estimating $\left|\left(1 / b_{n}\right)-(1 / M)\right|$.
3. In this problem, you may assume the following without proof:
(i) For each positive real a and $n \in \mathbb{N}-\{0\}$, there exists a unique positive solution of the equation $x^{n}=a$. Denote this number as $a^{1 / n}$. (The existence of $a^{1 / n}$ is a consequence of the l.u.b. property of \mathbb{R}.)
(ii) For $m, n \in \mathbb{N}-\{0\}$ and for any $x \in \mathbb{R}$,

$$
\left(x^{m}\right)^{n}=\left(x^{n}\right)^{m}=x^{m n} .
$$

Recall that any positive rational number q is of the form m / n, where $m, n \in \mathbb{N}-\{0\}$. Now, for any real $a>0$, we define

$$
\begin{equation*}
a^{q}:=\left(a^{m}\right)^{1 / n} . \tag{1}
\end{equation*}
$$

(a) Show that a^{q}, as given by (1), is well-defined: i.e., if $q=\mu / \nu, \mu, \nu \in \mathbb{N}-\{0\}$ is a different representation of q, then $\left(a^{m}\right)^{1 / n}=\left(a^{\mu}\right)^{1 / \nu}$.
(b) Having defined what a^{q} means, $a>0$ and q a positive rational, prove the following: Let q be a positive rational. Then, the sequence $\left\{1 / n^{q}\right\}$ converges and

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{q}}=0
$$

4. Does the sequence $\left\{a_{n}\right\}$, where

$$
a_{n}=\frac{1-(-1)^{n}}{2}, \quad n=1,2,3, \ldots,
$$

converge? If so, then what is its limit? Justify your answer.
5. In each case below, show that the series $\sum_{n=1}^{\infty} a_{n}$ converges, and find the sum:
a) $a_{n}=1 /(2 n-1)(2 n+1)$
b) $a_{n}=1 /\left(n^{2}-1\right)$
c) $a_{n}=n /(n+1)(n+2)(n+3)$
d) $a_{n}=(\sqrt{n+1}-\sqrt{n}) / \sqrt{n^{2}+n}$

