UMA 101: ANALYSIS & LINEAR ALGEBRA-I AUTUMN 2023 HOMEWORK 5

Instructor: GAUTAM BHARALI

Assigned: SEPTEMBER 5, 2023

1. Let $\{a_n\}$ be a convergent sequence with limit L. Prove that the sequence $\{b_n\}$, where

$$b_n = \frac{a_1 + \dots + a_n}{n},$$

converges to L.

2. Let $\sum_{n=1}^{\infty} a_n$ be a convergent real series. Prove that $\lim_{n\to\infty} a_n = 0$. **Hint.** Apply the lemma discussed during the September 4 lecture to an appropriate sequence.

3. Determine whether or not each of the following non-negative series converges. Give **justifica-tions.**

- (a) (Apostol, 10.14, Prob. 1) $\sum_{n=1}^{\infty} n/(4n-3)(4n-1)$
- (b) $\sum_{n=1}^{\infty} |\sin(5n^2)|/n^2$
- (c) $\sum_{n=1}^{\infty} \left(3 + (-1)^n\right)/3^n$
- (d) (Apostol, 10.14, Prob. 7) $\sum_{n=1}^{\infty} n!/(n+2)!$
- (e) $\sum_{n=1}^{\infty} b_n/5^n$, where $\{b_n\}$ is a bounded sequence with non-negative terms
- (f) $\sum_{n=1}^{\infty} (n^2 + (-1)^n)/n^2$

4. State whether or not each of the following non-negative series converges. Give justifications.

a) (Apostol, 10.16, Prob. 13) $\sum_{n=1}^{\infty} \frac{n^3 \left(\sqrt{2} + (-1)^n\right)^n}{3^n}$ b) $\sum_{n=1}^{\infty} (n!)^2 / (2n)!$

Note. You must use only the tests and results discussed in class or assigned for self-study.