# UMA 101 : ANALYSIS \& LINEAR ALGEBRA - I AUTUMN 2023 <br> HOMEWORK 5 

Instructor: GAUTAM BHARALI
Assigned: SEPTEMBER 5, 2023

1. Let $\left\{a_{n}\right\}$ be a convergent sequence with limit $L$. Prove that the sequence $\left\{b_{n}\right\}$, where

$$
b_{n}=\frac{a_{1}+\cdots+a_{n}}{n},
$$

converges to $L$.
2. Let $\sum_{n=1}^{\infty} a_{n}$ be a convergent real series. Prove that $\lim _{n \rightarrow \infty} a_{n}=0$.

Hint. Apply the lemma discussed during the September 4 lecture to an appropriate sequence.
3. Determine whether or not each of the following non-negative series converges. Give justifications.
(a) (Apostol, 10.14, Prob. 1) $\sum_{n=1}^{\infty} n /(4 n-3)(4 n-1)$
(b) $\sum_{n=1}^{\infty}\left|\sin \left(5 n^{2}\right)\right| / n^{2}$
(c) $\sum_{n=1}^{\infty}\left(3+(-1)^{n}\right) / 3^{n}$
(d) (Apostol, 10.14, Prob. 7) $\sum_{n=1}^{\infty} n!/(n+2)$ !
(e) $\sum_{n=1}^{\infty} b_{n} / 5^{n}$, where $\left\{b_{n}\right\}$ is a bounded sequence with non-negative terms
(f) $\sum_{n=1}^{\infty}\left(n^{2}+(-1)^{n}\right) / n^{2}$
4. State whether or not each of the following non-negative series converges. Give justifications.
a) (Apostol, 10.16, Prob. 13) $\sum_{n=1}^{\infty} \frac{n^{3}\left(\sqrt{2}+(-1)^{n}\right)^{n}}{3^{n}}$
b) $\sum_{n=1}^{\infty}(n!)^{2} /(2 n)$ !

Note. You must use only the tests and results discussed in class or assigned for self-study.

