UMA 101 : ANALYSIS & LINEAR ALGEBRA – I AUTUMN 2023 HOMEWORK 6

Instructor: GAUTAM BHARALI

Assigned: SEPTEMBER 12, 2023

1. Fix some positive integer N. Show that the series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if the series $\sum_{n=N}^{\infty} a_n$ is convergent.

2. Let p be a real number contained in an open interval I. Let f be a \mathbb{R} -valued function such that f(x) is defined at each $x \in I$ except perhaps at x = p. Let $A \in \mathbb{R}$. How do you express quantitatively (involving parameters like ε , etc., in an appropriate way) the statement, "f(x) does **not** have the limit A as x approaches p"?

3. Let p be a real number contained in an open interval I. Let f, g be \mathbb{R} -valued functions such that f(x) and g(x) are defined at each $x \in I$ except perhaps at x = p. Suppose $\lim_{x\to p} f(x) = A$ and $\lim_{x\to p} g(x) = B$. Prove using the " ε - δ definition" that

$$\lim_{x \to p} f(x)g(x) = AB$$

directly without first assuming — as has been done in the textbook — that either A or B equals 0

4. Show that

$$\lim_{x \to 0} \frac{\sin(6x) - \sin(5x)}{x}$$

exists. Give justifications in terms of the limit theorems that are used.

Note. You may use standard trigonometric identities learnt in high school without deriving them.

5. Let n be some (fixed) positive integer and let $p \in \mathbb{R}$. Complete the following outline to show that $\lim_{x\to p} x^n = p^n$ using **only** the " ε - δ definition" (i.e., **without** using the limit theorem stated in Problem 3 above):

- (a) Establish the desired limit for the case n = 1 using the " ε - δ definition".
- (b) Now, use Part (a) appropriately to establish the stated limit.
- 6. Show, using any of the theorems on the algebra of limits, that the limit

$$\lim_{x \to 0} \frac{1 - \sqrt{1 - x^2}}{x^2}$$

exists.