UMA 101: ANALYSIS \& LINEAR ALGEBRA - I
 AUTUMN 2023
 HOMEWORK 7

Instructor: GAUTAM BHARALI
Assigned: SEPTEMBER 19, 2023

1. Solve:

- Problems 1, 3, 4, 6, 7, and 10 from Section 10.14 of Apostol's book, and
- Problems 1, 3, 5, and 8 from Section 10.16 of Apostol's book.

Make free use, without any proof, of the fundamental limits (10.9), (10.10), and (10.12) - given on page 380 of Apostol's book - and any limits presented in class, if the need arises.
2. Prove the following:

Theorem. Let $\sum_{n=1}^{\infty} a_{n}$ be a series with non-negative terms such that $a_{n+1} \leq a_{n}$ for $n=1,2,3, \ldots$. Then, the given series converges if and only if the series

$$
\sum_{k=0}^{\infty} 2^{k} a_{2^{k}}
$$

converges.
3. Prove the following:

Theorem (Squeeze Theorem). Suppose $\left\{a_{n}\right\},\left\{b_{n}\right\}$, and $\left\{c_{n}\right\}$ are real sequences and that there exists a number $M \in \mathbb{P}$ such that

$$
a_{n} \leq b_{n} \leq c_{n} \quad \forall n \geq M
$$

Suppose $\left\{a_{n}\right\}$ and $\left\{c_{n}\right\}$ converge to L. Then $\left\{b_{n}\right\}$ also converges to L.
4. Let $f(x)=[x]$, i.e., the greatest integer function. Fix a point $p \in \mathbb{R}$. Using either of the definitions of the limit of $f(x)$ as x approaches p - whichever is more convenient - discuss whether or not $f(x)$ has a limit as x approaches p, depending on p.

