UMA 101 : ANALYSIS \& LINEAR ALGEBRA-I
 AUTUMN 2023
 HOMEWORK 8

Instructor: GAUTAM BHARALI
Assigned: OCTOBER 10, 2023

1. Let $I \subseteq \mathbb{R}$ be an interval, $f: I \rightarrow \mathbb{R}$, and let $p \in I$. Let $\left\{a_{n}\right\} \subset I$ be a sequence such that $\lim _{n \rightarrow \infty} a_{n}=p$. Suppose f is continuous at p. Then, prove that $\left\{f\left(a_{n}\right)\right\}$ is a convergent sequence and $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(p)$.
Remark. The above result provides yet another method of constructing new convergent sequences from known convergent sequences.
2. Fix a number $p \in \mathbb{R}$. Let θ denote an arbitrary real number. We showed in class that

$$
|\sin (\theta+p)-\sin (p)| \leq|\sin \theta|+2 \sin ^{2}\left(\frac{\theta}{2}\right)
$$

From this, deduce that the sine function is continuous at p. You may freely use without proof the fact that $|\sin \theta| \leq|\theta| \forall \theta \in \mathbb{R}$ (the easiest proof of which you know from Euclidean geometry).

3-6. Solve Problems 7-10 in Section 3.8 of Apostol's book.
7. Let $a<b<c \in \mathbb{R}$. Suppose $g:[a, b] \rightarrow \mathbb{R}$ and $h:[b, c] \rightarrow \mathbb{R}$ are two continuous functions. You are given that $g(b)=h(b)$. Define the function

$$
f(x)= \begin{cases}g(x), & \text { if } a \leq x \leq b \\ h(x), & \text { if } b \leq x \leq c\end{cases}
$$

Use the $\varepsilon-\delta$ definition of continuity to show that f is continuous on $[a, c]$.
Note. From the sequential definition of continuity, it is almost immediate that f is continuous! The aim of this problem is to get you to work with the $\varepsilon-\delta$ definition.
8. Show that the equation

$$
x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0
$$

where $a_{0}, a_{1}, \ldots, a_{n-1}$ are real numbers, has at least one root in \mathbb{R} if n is odd.
9. Show that the equation $\sin x=x-1$ has at least one real solution.
10. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as follows:

$$
f(x)= \begin{cases}\sin x, & \text { if } x \leq c \\ a x+b, & \text { if } x>c\end{cases}
$$

where a, b, c are real constants. Suppose a and b are fixed. Find all possible values of c such that f is continuous at $x=c$. You may use any result in this assignment sheet that may be relevant to solving this problem.

