THE DYNAMICS OF HOLOMORPHIC CORRESPONDENCES
OF P!: INVARIANT MEASURES AND THE NORMALITY SET

GAUTAM BHARALI AND SHRIHARI SRIDHARAN

ABSTRACT. This paper is motivated by Brolin’s theorem. The phenomenon we wish to
demonstrate is as follows: if F' is a holomorphic correspondence on P!, then (under certain
conditions) F admits a measure pr such that, for any point z drawn from a “large” open
subset of P!, jur is the weak*-limit of the normalised sums of point masses carried by
the pre-images of z under the iterates of F. Let 'F denote the transpose of F. Under
the condition diop(F) > diop('F), where dyop denotes the topological degree, the above
phenomenon was established by Dinh and Sibony. We show that the support of this ur is
disjoint from the normality set of F. There are many interesting correspondences on P!
for which dtop(F) < diop('F). Examples are the correspondences introduced by Bullett
and collaborators. When diop(F) < diop('F), equidistribution cannot be expected to
the full extent of Brolin’s theorem. However, we prove that when F admits a repeller,
equidistribution in the above sense holds true.

1. INTRODUCTION

The dynamics studied in this paper owes its origin to a work of Bullett [2] and to a
series of articles motivated by [2] — most notably [6, 5, 7, 4]. The object of study in [2]
is the dynamical system that arises on iterating a certain relation on C. This relation is
the zero set of a polynomial g € C[z1, z9] of a certain form such that:

e g(+,29) and g(z1,-) are generically quadratic; and
e if V, denotes the biprojective completion of {g = 0} in P! x P!, then no irreducible
component of V; is of the form {a} x P! or P! x {a}, where a € P1.

In [7], this set-up was extended to polynomials g € Cl[z1, 22| of arbitrary degree that
induce relations V, C P! x P! with similar properties. Since relations can be composed, it
would be interesting to know whether the iterated composition of such a relation exhibits
equidistribution properties in analogy to Brolin’s Theorem [1, Theorem 16.1].

The reader will be aware of recent results by Dinh and Sibony [11] that, it would seem,
should immediately solve the above problem. However, key assumptions in the theorems
of [11] fail to hold for many interesting correspondences on P'. We shall discuss what this
assertion means in the remainder of this section.

On the dynamics of multivalued maps between complex manifolds: results of perhaps
the broadest scope are established in [11]. We borrow from [11] the following definition.

Definition 1.1. Let X; and X5 be two compact complex manifolds of dimension k. We
say that I' is a holomorphic k-chain in X7 x Xo if I' is a formal linear combination of the
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form
N
r =Y mTy, (1.1)
j=1

where the m;’s are positive integers and I'q,...,I'y are distinct irreducible complex sub-
varieties of X1 x Xg of pure dimension k. Let m; denote the projection onto X;, ¢ =1, 2.
We say that the holomorphic k-chain I' determines a meromorphic correspondence of X1
onto X if, for each I'; in (1.1), Wl’rj and Wg]Fj are surjective. I" determines a set-valued
map, which we denote by Fr, as follows:

N
X122— U7T2 (ry Yz} nTy).
j=1

We call Fr a holomorphic correspondence if Fr(x) is a finite set for every z € Xj.

Remark 1.2. Tt is helpful to encode holomorphic correspondences as holomorphic chains.
Circumstances arise where, in the notation of (1.1), m; > 2. For instance: even if we start
with a holomorphic correspondence on P! determined by an irreducible variety V. C P! xP!,
composing V' with itself (see Section 2) can result in a variety that is not irreducible and
some of whose irreducible components occur with multiplicity > 2.

Suppose (X, w) is a compact Ké&hler manifold of dimension k& (w denoting the normalised
Kahler form) and F' is a meromorphic correspondence of X onto itself. One of the results
in [11] says, roughly, that if dj_1 (F') < di(F'), where di_1(F') and di(F') are the dynamical
degrees of F' of order (k—1) and k respectively (see [11, §3.5] for a definition of dynamical
degree), then there exists a probability measure pp satisfying F*(up) = di(F)ur, such

that
1

dy(F)"
When dim¢(X) = 1, the assumption d_1(F) < di(F) translates into the assumption that
the (generic) number of pre-images under F' is strictly larger than the number of images
under F, both counted according to multiplicity. None of the techniques in the current
literature are of help in studying correspondences F' for which di_1(F) > di(F), even
when (X,w) = (P*,wpg) (in this paper wrg will denote the Fubini-Study form).

(F™)*(wh) weak”, [F as measures, as n — 0. (1.2)

Why should one be interested in the dynamics of a correspondence F' : X — X for
which di_1(F) > di(F)? The work of Bullett and collaborators suggest several reasons
in the case (X,w) = (P!, wrs). Thus, we shall focus on correspondences on P! (although
parts of our results hold true for Riemann surfaces). A mating of two monic polynomials
on C is a construction by Douady [12] that, given two monic polynomials f,g € Clz]
of the same degree, produces a continuous branched covering (f II g) of a topological
sphere to itself whose dynamics emulates that of f or of g on separate hemispheres. For
certain natural choices of pairs (f, g), one can determine in principle — see [14, Theorem
2.1] — when (f II g) is semiconjugate to a rational map on P!. In a series of papers
[6, 3, 5, 4], Bullett and collaborators extend this idea to matings between polynomial
maps and certain discrete subgroups of the Mobius group or certain Hecke groups. The
holomorphic objects whose dynamics turn out to be conjugate to that of matings in this
new sense are holomorphic correspondences on P'. Such correspondences are interesting
because they expose further the parallels between the dynamics of Kleinian groups and of
rational maps. It would be interesting to devise an ergodic theory for such matings. In all
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known constructions where a holomorphic correspondence F of P! models the dynamics of
a mating of some polynomial with some group, do(F') = d1(F). In this context, to produce
an invariant measure — and, especially, to give an explicit prescription for it — would
require that the techniques in [11] be supplemented by other ideas.

We now give an informal description of our work (rigorous statements are given in
Section 3). Since we mentioned Brolin’s theorem, we ought to mention that an analogue
of Brolin’s theorem follows from (1.2) and certain other results in [11] when do(F') < dy (F).
To be more precise: there exists a polar set £ ¢ P! such that

1 .
() (F™)*(0) weak”, [F as measures, as n — oo, Vo € P\ &, (1.3)
1

where pup is as in (1.2) with (X,w) = (P!,wrs). This means that we have extremely
precise information about the measure pp. Our first theorem (Theorem 3.2) uses this
information to show that the support of pp is disjoint from the normality set of F', where
“normality set” is the analogue of the Fatou set in the context of correspondences.

When F (a holomorphic correspondence on P!) satisfies do(F) > di(F), there is no
reason to expect (1.3). Indeed, consider these examples: Fj(z) := 1/z, in which case
do(F1) = di(F1) = 1; or the holomorphic correspondence Fy determined by the P! x
P! —completion of the zero set of the rational function g(21, 22) = 23 — (1/2%) , in which
case do(F3) = di(F») = 2. When dy(F') > dy(F), we draw upon certain ideas of McGehee
[16]. We show that if F' admits a repeller R C P! — in the sense of McGehee, which extends
the concept of a repeller known for maps — having certain properties, then there exists a
neighbourhood U(F,R) D R and a probability measure up satisfying F*(ur) = di(F)up,
such that

dl(lF)n(F”)*(éx) weak?, [p as measures, as n — oo, Vo € U(F,R). (1.4)
A rigorous statement of this is given by Theorem 3.5. The condition that F' admit a repeller
is very natural, and was motivated by the various examples constructed by Bullett et al.
We take up one class of these examples in Section 7 and show that the conditions stated
in Theorem 3.5 hold true for this class. Observe that (1.4) differs from (1.3) in that it
does not state that P!\ U(F,R) is polar (or even nowhere dense), but this is the best one
can expect (see Remark 3.6 below).

The measure pp in (1.3) and (1.4) is not, in general, invariant under F in the measure-
theoretic sense. It is merely F*-invariant; see Section 3 for details. What is interesting to
find is the phenomenon of equidistribution, which arises in so many situations (see, e.g.,
work of Clozel, Oh and Ullmo [8], which involves correspondences in a different context).
Yet, for a holomorphic correspondence F on P! with di(F) < do(F), we can show that
there exists a measure that is invariant under F' in the usual sense; see Corollary 3.7.
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matics, Indian Institute of Science, for its support and hospitality. Gautam Bharali thanks
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in Section 7.2. The authors thank the anonymous referee of an earlier version of this
article for useful suggestions for improving the exposition herein.
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2. FUNDAMENTAL DEFINITIONS

In this section, we isolate certain essential definitions that are somewhat long. Readers
who are familiar with the rule for composing holomorphic correspondences can proceed to
Section 2.2, for a definition of the normality set of a holomorphic correspondence.

2.1. The composition of two holomorphic correspondences. Let X be a complex
manifold of dimension k. For any holomorphic k-chain I" on X, we define the support
of I', assuming the representation (1.1), by |I'| := U;-Vlej. Consider two holomorphic
correspondences, determined by the k-chains

N1 N2
rt =" m Ty, 2= my Ty,
j=1 j=1
in X x X. The k-chains I, I'; have the alternative representations

1 _ / ° 2 / °
"= ZlﬁjSLlrl’j’ - = ZlﬁjﬁLQFQ’j’ (21)

where the primed sums indicate that the irreducible subvarieties I'; ;, j =1,..., Ly, are

not necessarily distinct and are repeated according to the coefficients m, ;. Before we give
the definition of I'? o I'!, observe that we may view I'! and I'? as relations |I'*| and |I"?|
on X. The composition-rule for relations is classical. Denoting the composition of |I'!|
and |I"?| in the classical sense by |I"%| x |I'!|, we recall:

|2 % [T = {(#,2) € X x X : 3y € X sit. (z,y) € |, (y,2) €T} (2.2)

This is the view we take in Section 6, where we need to make use of McGehee’s results
from [16] on the dynamics of closed relations on compact spaces.

The object I'? o I'! is, in essence, just the composition of two relations together with
data that allows one to count forward and backward images of points “according to mul-
tiplicity”. To begin, we define the k-chain IS, oI ; by the conditions:

T3, 007 ;| ={(z,2) e X x X:3ye Xst. (z,y) €7, (y,2) €3}, (2.3)

IS, o't = E Vs i1Ys i
2,1 1,7 1<s<N(jl) s, gl s, jly

where the Y, ;;’s are the distinct irreducible components of the subvariety on the right-
hand side of (2.3), and vy j € Zy is the generic number y’s as (z, z) varies through Y; j
for which the membership conditions on the right-hand side of (2.3) are satisfied. Finally,

we define the k-chain
L1 Lo

r*or' := Y ) I3,oI% ;. (2.4)
j=1 =1

If I'" and I'? determine holomorphic correspondences on X, then so does I'2 o I''. Tt re-
quires some amount of intersection theory to show this, but see Section 4 for an elementary
proof when X = P!. The n-fold iterate of I" will be denoted by I"°".

We adopt a notational simplification. Given a k-chain I" that determines a holomorphic
correspondence and there is no scope for confusion, we shall denote Fr by F. We conclude
with a simple observation: for holomorphic correspondences

|I?orlY = |T? | (2.5)
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2.2. The normality set of a holomorphic correspondence on a Riemann surface.
Let F be a holomorphic correspondence on a compact Riemann surface X. The essential
concept of the normality set of F' is not difficult. But we will need formalism that enables
good book-keeping. We will use the representation (2.1) for a holomorphic correspondence
I'. The set of integers {m, m + 1,...,n} will be denoted by [m..n].

Given N € Z,, we say that (z0,...,2n; a1,...,any) € XNTEx [1.. L]V is a path of an
iteration of F starting at zg, of length N, or simply an N -path starting at zg, if

(ijl,Zj) € F;j, j=1,...,N.

Next, given any two irreducible subvarieties I'} and I'} in the decomposition of I' in the
sense of (2.1), we define

Tk = {(z,9,2) € X*: (2,y) €T3, (y,2) €7}
This construction can be extended to any multi-index o € [1.. L}/:

re, o= {(zo,...,zj) € X7t (wj_1,23) €TY,, 1 <i <} (2.6)

[0 2

In all discussions on the normality set of F', we shall work with only those N-paths
(204 -+, 2N; 1, ...,an) that satisfy

(x) Foreachj=1,...,N, FEO“ ) N Bj is an irreducible complex-analytic subvariety
of B; for every sufficiently small open ball B; > (2o,. .., 2j).

An N-path will be called an admissible N -path if it satisfies (x). Fix zp € X and set
PnN(z9) = the set of all paths of iterations of F, of length N, starting at zp,

N € Z,. We will denote an element of &x(z9) by Z. Observe that if Z is an admissible
N-path, N > 2, then there is a wunique irreducible component of anl ) to which
IR A ]

(20,...,25) belongs, j =2,...,N. Hence, if Z is an admissible N-path, let us write

. {F;l, if j =1,

23 77 ) the unique irreducible component of anl ay) containing (zo,...,z;), if j>2.

Let vz ;) : Yz, — F.z, i where Yz ; is a compact Riemann surface, denote the desingu-
larization of 'z i We now have the essential notations needed to define the normality set.
The definitions that follow are strongly influenced by the notion introduced by Bullett and
Penrose [7]. Yet, what we call a “branch of an iteration” will look vastly different from
its namesake in [7]. This is because, for our purposes, we will need to label (resp., track)
all the maps involved by (resp., along) the various paths that comprise Zy(zp). lLe.,
the difference is (largely) in formalism. The one alteration that we make to the Bullett—
Penrose definition is in working with only admissible paths: this allows us to parametrise
holomorphic branches of the iteration of F' along Z — which we shall presently define —
simply by Z itself (see Remark 5.3 as well).

Let proj, and Wi denote the following projections:
projk : Xk+1 — Xk7 projk; : (.’L'(), sy .ka) L — (xOJ e 7xk71)7
Tri:Xk‘|r1 — X, W,Ji' (o, ... wp) — oy, 0< 5 <K,

where k € Z,. The idea of a holomorphic branch of an iteration of F' along Z, Z € Py (z)
and admissible, is to assign to a suitable open neighbourhood U 3 zp a finite sequence
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(U(Z,j))1<j<n of I'g ;-open sets. In the case j = 1, the natural choice of U(Z,1) is the
irreducible component of I'y; | N (U x X) containing (20, 21). Proceed inductively and set:

U(Z,j) = the irreducible component of Q(Z,j) NIy ; containing (zo, ..., z;), and
U x X, if j =1,

UZ.j) = {[U < TE-L b (U(Z, k)] X, ifj > 2.

The phrase “irreducible component” above signifies that Q(Z, j) N F’z7 j be viewed as a
complex-analytic subvariety of Q(Z,j). Now, if each U(Z, j) were obtainable as the graph
of some holomorphic map ¥; : U — C’, then the sequence (¥ j)1<j<n would be a natural
definition of a holomorphic branch along Z; see Remark 2.1. However, if some U(Z, j) has
a singularity at (zo,...,%;), or does not project injectively under w?, then the preceding
idea does not work. Therefore, we modify this idea by substituting the aforementioned
(¥;)1<j<n by a sequence of natural parametrisations of the U(Z, j)’s.

To this end, fix a zg € X and an admissible path Z € Pn(zy). Each U(Z,j) is
parametrised via v(z ;) by an open patch in the Riemann surface Yz ;. We say that
there exists a holomorphic branch of an iteration of F on U along Z, which we denote by
(w( z 1)z Ny U ), if there exist a connected neighbourhood U of zy and holomorphic
mappings ¢(z j) : D — Y(z ;) of a planar domain D containing 0 that, for each j =
1,..., N, satisfy three conditions:

1) Viz, 4 ° w(z,j)(o) = (20, - - -,Zj)-

2) (Compatibility condition) proj; o v(z ;) 0 ¥(z, ;) = V(z,j-1) ° Y (2, j-1), ] # 1.
A part of our third condition will encode the requirement that U(Z,1),...,U(Z,N) con-
tain no singularities at which they are locally reducible (i.e., as analytic germs). (Loosely
speaking, this ensures that any point z, # 2o sufficiently close to zy will have a holomor-
phic branch of an iteration of F' along some admissible path in Zx(z,) that is “sufficiently
close” to (Y(z 1), -+, ¥z, N)) — see Remark 2.3.) More precisely:

3) (2, ;) is a finite-sheeted (perhaps branched) covering map onto u(;’} j)(U (Z,7)),
and v( g ;) maps the latter set homeomorphically onto U(Z, j).

Remark 2.1. Note that if F is a non-constant rational map on P!, then the maps
Wiz = (idp+20, F(+20)lp, .. FI o F(-+20)| ), j=1,23,...,

where D is a small disc around 0, satisfy all the conditions above (taking each Yz 5 to
be the graph of the appropriate (P!)/-valued map).

Having defined holomorphic branches, we can give the following definition.

Definition 2.2. Let X be a compact Riemann surface and let F' be a holomorphic cor-
respondence on X. A point z5 € X is said to belong to the normality set of F', denoted
by N (F), if there exists a connected neighbourhood U of 2y and a single planar domain
D containing 0, which depends on zg, such that
1) For each n € Zy and each Z € Z,(2p), there exists a holomorphic branch
(Y(z,1)s- - P(z,n); U) of an iteration of F' along Z with Dom(v(z ;) = D for
every (Z, j).
2) The family

F(20) == {mhovz otz n€ly, 2 Pu(n), & (Wz1) - Pzn;U)
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is a holomorphic branch of an iteration of F' along Z}

is a normal family on D.

Remark 2.3. The set N'(F) is open, although it is not necessarily non-empty. If zg € N'(F)
and U is the neighbourhood of 2y as given by Definition 2.2, then it is routine to show
that U C N(F).

3. MORE DEFINITIONS AND STATEMENT OF RESULTS

We need to present some constructions before we can state our first result.

Given a holomorphic correspondence on X, dimc¢ (X ) = k, determined by a holomorphic
k-chain I', its adjoint correspondence is the meromorphic correspondence determined by
the k-chain (assuming the representation (1.1) for I)

N
TF = Z ijFj,
j=1

where T := {(y,7) € X x X : (x,y) € T';}. In general, 'I" may not determine a holomor-
phic correspondence. However, when dimc (X) = 1, it is easy to see that any meromorphic
correspondence of X is automatically holomorphic. Thus, if Fr is a holomorphic corre-
spondence on P!, then so is Fi;. In the abbreviated notation introduced in Section 2, we
shall henceforth write:

v .= Fron, TF = FTF'

Given a holomorphic k-chain I" on X x X, I" detemines a current of bidimension (k, k)
via the currents of integration given by its constituent subvarieties I';. We denote this
current by [I']. If F is determined by I', we formally define the action of F' on currents S
on X of bidegree (p,p), 0 < p < k, by the prescription:

FH(S) = (m)« (ma(S) A[T), (3.1)

where, as usual, 7; denotes the projection of X x X onto the jth factor. This prescription
will make sense for those currents for which the pullback by my makes sense and the
intersection of this new current with [I"] also makes sense. That this is the case is easy to
see when S is a smooth (p,p) form (hence a current of bidegree (p,p) on X). The reader
is referred to [11, Section 2.4] for details.

A finite Borel measure p on X can be viewed as a current of bidegree (k, k). Let us
work out F*(u) for a specific example that is central to this paper. Let x € X and let ¢,
be the Dirac mass at x. The prescription (3.1) is interpreted as

N
(F*(0:),¢) Sty duatity (m3(0:) A L), 759) o= D my{(malr,)(6:), 7i)
j=1

N
= Y mide (mly, ) (nl).  (3.2)
j=1

where each summand in the last expression is just the way one defines the pullback of a
current under a holomorphic mapping (in this case, 7r2]Fj , j=1,...,N) of an analytic
space that is submersive on a Zariski open subset. If Q C X is a Zariski-open subset
of X such that (7, 1(Q) NT;,Q,m) is a covering space for each j = 1,..., N, then, for
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x €, (ﬂg[rj)*(f)(x) is just the sum of the values of f on the fibre 7, {2} NT; for any
f€C>®(X x X). Thus, when z € €, (3.2) equals the quantity

N

domi > 9O = Algl@)  weQ (3:3)

J=1 G(C)er;
For any fixed continuous function ¢, A[p] extends continuously to each z € X \ Q. We
shall denote this continuous extension of the left-hand side of (3.3) also as A[p]. In other
words, F*(8,) can be defined as a measure supported on the set 7F(z), and

(F"(02),0) = Alpl(x) Vo e X, Vo e C(X). (3-4)

The arguments preceding (3.3) continue to be valid if, in (3.2), d, is replaced by u, a finite,
positive Borel measure on X.

The push-forward of a current S by F is defined by the equation F,(S) := (TF)*(S)
whenever the latter makes sense.

We define two numbers that are essential to the statement of our theorems. With F' as
above, let dq(F) denote the generic number of preimages under F of a point in P!, counted
according to multiplicity. More rigorously, this means — 2 being any Zariski-open set of
the type described prior to the equation (3.3) — that

N
di(F) = ijCard{:c C(zyy) €y}, yeQ, (3.5)
j=1
which is independent of the choice of y € Q. In other words, d;(F) is the topological degree
of F', often denoted as dip(F). Define do(F) := dyop(TF).
We will first consider a holomorphic correspondence F' of P! such that di(F) > do(F).
A very special case of a result of Dinh and Sibony is that there exists a probability measure
pr such that
1
dq (F )n
where wrg denotes the Fubini-Study form on P!, treated as a normalised area form. Let
us call this measure the Dinh—Sibony measure associated to F'. Since equidistribution is
among the themes of this paper, we should mention that for a generic z € P!, up is the
asymptotic distribution of the iterated pre-images of z. More precisely:

(F")*(wrs) el [F as measures, as n — 00, (3.6)

Fact 3.1. Let F be a holomorphic correspondence on P! such that do(F) < d1(F) and let
pr be the Dinh—Sibony measure associated to F. There exists a polar set € & P! such that
for each z € PL\ €

1 .
d (F)n (Fn)*((sz) —’weak HE as measures, as n — 0.
1

Consequently, F*(ur) = di(F)ur.

The above follows by combining (3.6) with another result from [11]. Fact 3.1 will have no
role to play herein except to set the context for our results. For instance, it shows that
supp(ur) could be viewed — especially in view of Brolin’s results — as the analogue of
the Julia set in the general context of correspondences. While, for a rational map on P!,
its Julia set is definitionally disjoint from its normality set, in the case of correspondences
we have:
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Theorem 3.2. Let F be a holomorphic correspondence on P! and assume that do(F) <
di(F). Let up be the Dinh—Sibony measure associated to F. Then, supp(ur) is disjoint
from the normality set of F.

The ideas behind the proof are as follows. For N(F) # &, we shall show that one
can apply Marty’s normality criterion in such a manner as to deduce that the volumes
of any compact K € N(F) given by the measures induced by (F")*(wpg) are bounded
independent of n. The result then follows due to the fact that di(F)~" — 0 as n — oo.

The situation is very different when do(F') > dy(F'). To repeat: we should not expect
asymptotic equidistribution of preimages in general, even when do(F'),d;(F) > 2, as the
holomorphic correspondence F' whose graph is the P! x P! —completion of the zero set
of the rational function g(z1,22) = 25 — (1/2%) illustrates. We require some dynamically
meaningful condition for things to work. It is this need that motivates the next few
definitions. Let X be a compact Hausdorff space and let f C X x X be a relation of X
to itself such that 1 (f) = X. For any set S C X, we write

f(S) == m (a7 ()N f).
We define the nth iterated relation by
0 = fx D forn > 2, (3.7)

fo =,
where the composition operation x is as given by (2.2) above. It is useful to have a notion
of omega limit sets in the context of iterating a relation analogous to the case of maps.
This definition is provided by McGehee in [16, Section 5]. Following McGehee, for a subset
S C X, let us write

R(S; f) = {K Cerosea X : K satisfies f(K) C K and f™(S) c K for some n > 0}

(with the understanding that O is the diagonal in X x X ). The omega limit set of S
under f, denoted by w(S; f), is the set

w(S; f) = [&S; ).

We say that a set A C X is an attractor for f if A # X and there exists a set U such that
A C U° and such that w(U; f) = A.

These concepts motivate the following two definitions in the context of holomorphic
correspondences.

Definition 3.3. Let F' be a holomorphic correspondence on a Riemann surface X given
by the holomorphic 1-chain I". A set A C X is called an attractor for F if it is an attractor
for the relation |I'| in the sense of [16] (i.e., as discussed above). A set R is called a repeller
for I if it is an attractor for the relation |T).

We must note here McGehee calls the relation on X induced by |'I'| the transpose of |I'|,
and our |7 is |I'|* in the notation of [16].

Definition 3.4. Let F' be as above and let R be a repeller for F'. We say that R is a
strong repeller for F if there exists a point ag € R and an open set U D R such that for
each w € U, there exists a sequence {a,(w)}nez, such that

e a,(w) € (IF)"(w) Vn € Z,; and

e a,(w) — ap as n — o0.



10 GAUTAM BHARALI AND SHRIHARI SRIDHARAN

The term strong attractor has an analogous definition.

We call w € P! a critical value if there exists an irreducible component I'; such that at
least one of the irreducible germs of I'; at some point in 7y Haw} NI is either non-smooth
or does not project injectively under mo.

We are now in a position to state our next result.

Theorem 3.5. Let F' be a holomorphic correspondence on P! for which do(F) > dy(F).
Assume that F has a strong repeller R that is disjoint from the set of critical values of F'.

Then, there exist a probability measure pr on P! that satisfies F*(up) = di(F)pr and an
open set U(F,R) D R such that

1 weak™

7 (F)n(F”)*(éz) —— up as measures, asn — oo Yz € U(F,R). (3.8)
1

It may seem to the reader that (3.8) could be stronger, since the theorem does not state
that P!\ U(F,R) is polar (or even nowhere dense). However, given that do(F) > di(F),
this is very much in the nature of things. In this regard, we make the following remark.

Remark 3.6. If F' is as in Theorem 3.5, we cannot conclude, in general, that the set
P!\ U(F,R) is polar. The following example constitutes a basic obstacle to P* \ U(F,R)
being even nowhere dense. Let P be any polynomial whose filled Julia set has non-empty
interior. Consider the holomorphic correspondence F' determined by

' := the completion in P! x P! of the zero set of (21 — P(z2)).

Here, do(F) = deg(P) > 1 = di(F). Note that {oo} is a strong repeller. However,
U(F,{occ}) cannot contain any points from the filled Julia set of P.

From the perspective of studying the problem of equidistribution of inverse images, The-
orem 3.5 is, to the best of our knowledge, the first theorem concerning the equidistribution
problem for holomorphic correspondences F' such that do(F') > dy(F).

We must point out that, in general, given di(F') > do(F'), the Dinh-Sibony measure is
not an invariant measure. (It is what one calls an F*-invariant measure.) A Borel measure
p is said to be invariant under F if its push-forward by F preserves (compensating for
multiplicity if F' is not a map) measure of all Borel sets — i.e., if Fiupu = do(F)p. Thus,
under the condition do(F') > d;(F’), we can actually construct measures that are invariant
under F":

Corollary 3.7. Let I be a holomorphic correspondence on P for which do(F) > di(F).

i) If do(F) > di(F), there exists a measure pp that is invariant under F.
i1) Suppose dy(F) = dy(F). If F has a strong attractor that is disjoint from the critical
values of \F, then there exists a measure up that is invariant under F.

The proof of Theorem 3.5 relies on techniques developed by Lyubich in [15]. Given our
hypothesis on the existence of a repeller R, one can show that there exists a compact set
B such that R C B° and 'F(B) C B. This allows us to define a Perron-Frobenius-type
operator Ap : C(B;C) — C(B;C), where

1
—— A
dl (F) ‘B )
with Al being the operator given by (3.3) with B replacing Q. Our proof relies on
showing that the family {A% : n =1,2,3,...} satisfies the conditions of the main result in

Ap =
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[15, §2] (which provides us a candidate for up). This goal is achieved, in part, by showing
that there exists an open neighbourhood W of the B above such that (W) C W, and
that around each z € W and for each n € Z, there are d;(F)" holomorphic branches
(counting according to multiplicity) of n-fold iteration of the correspondence TF.

The examples in Remark 3.6 have some very particular features. One might ask whether
there are plenty of holomorphic correspondences F on P! with do(F) > d1(F) — without
such special features as in the correspondences in Remark 3.6 — that satisfy the conditions
stated in Theorem 3.5. One might also ask whether any of the correspondences alluded
to in Section 1 satisfy the conditions in Theorem 3.5. The reader is referred to Section 7
concerning these questions. In the next section, we shall establish a few technical facts
which will be of relevance throughout this paper. The proofs of our theorems will be
provided in Sections 5 and 6.

4. TECHNICAL PROPOSITIONS
We begin by showing that the composition of two holomorphic correspondences on P!,
under the composition rule (2.4), produces a holomorphic correspondence.

One way to see this is to begin with how one computes F5 o F} if one is given exact
expressions for Fy and Fs. Let I'® be the graph of Fs, s = 1,2, and consider the repre-
sentations given by (2.1). Fix indices j and [ such that 1 < j < L; and 1 <1 < Lo. Tt
follows that there exist irreducible polynomials P;, P, € C[z,w] such that

1,0 C? = {(z,w) € C*: Pi(z,w) = 0}, I3, NC? = {(z,w) € C%: Py(z,w) = 0};
see, for instance, [18, pp.23-24]. Now, given any polynomial P € Clz, w], set
supp(P) = {(a, ) € N*: 829, P(0,0) # 0},
d.(P) := max{a € N: (a, ) € supp(P)},
dy(P) := max{f € N: (o, ) € supp(P)}.

Then, there is a choice of projective coordinates on P! such that

1 = {([20: z1]; [wo s wi]) € P! x P! zoz(Pl)wgw(Pl)Pl(zl/zo,wl/wo) = 0},
51 = {([20 s z1]; [wo s w1]) € P! x P! : zgz(PZ)wgw(PQ)Pg(zl/ZO,wl/wo) =0}.

With these notations, we are in a position to state our first proposition.

Proposition 4.1. Let I} ; and F;}l be irreducible subvarieties belonging to the holomor-
phic 1-chains ' and I'? respectively. Let Py and Py be the defining functions of I ; nC?
and FE,Z N C? respectively.

i) Let R(z,w) := Res(Pi(z,+), Pa(-,w)), where Res denotes the resultant of two uni-
variate polynomials. Let Vi denote the biprojective completion in P! x P! of
{(z,w) € C?: R(z,w) = 0}. Then 13,017 ;1 = Va.

ii) Vg has no irreducible components of the form {a} x P* or P! x {a}, a € P

Proof. Let us write V := |F§ ol j|. Since two polynomials p, ¢ € C[X] have a common
zero if and only if Res(p, ¢) = 0,

VNC? = {(z,w) € C?:Res(Py(z,-), Py(-,w)) = 0}.

Hence, as V is the biprojective completion of V N C? in P! x P!, (i) follows.



12 GAUTAM BHARALI AND SHRIHARI SRIDHARAN

To prove (ii), let us first consider the case when a # [0 : 1]. Then, it suffices to show
that R has no factors of the form (z — a) or (w — a). We shall show that R has no factors
of the form (z — a). An analogous argument will rule out factors of the form (w — a). To
this end, assume that there exists an a € C such that (z — a)|R in C[z,w]. This implies

R(a,w) = 0 Yw € C.
Thus, for each w € C, the polynomial P5(-,w) has a zero in common with p; := Pi(a,-) €

C[X]. Note that p; # 0 because, otherwise, (z — a)| Py, which would contradict the fact
that Ws’FI ~ is surjective, s = 1,2. Thus, there exists an uncountable set S C C and a
3]

point b € p; {0} such that
Py(b,w) = 0 Yw € S.
But this implies Py(b,-) = 0, i.e. that (z — b)| P». This is impossible, for exactly the same
reason that (z — a)tP;. Hence R has no factors of the form (z — a), a € C.
Note that, if we write C' := {[z0 : z1] € P! : 21 # 0}, then, arguing as in the beginning
of this proof,

VN(C xC) = {(z,w) € C?: 2%FRes(P(1/z,-), Pa(-,w)) = 0},
where d,(R) is as defined in the beginning of this section. If we define Re Clz,w] by

R(z,w) = z%=Res(Py(1/z,-), Pa(-,w)),
then we get z{ R in C[z,w]. Thus, {[0: 1]} x P! is not an irreducible component of V. By
a similar argument, P! x {[0 : 1]} is not an irreducible component of V either. O

It is now easy to see that I'> o I'! determines a holomorphic correspondence on P!
Let us pick I'] ; and I‘g’ ; as in Proposition 4.1 and let C' be an irreducible component of
T3, 07 ;- By the fundamental theorem of algebra, 7| would fail to be surjective for
some s € {1,2} only if C is of the form {a} x P! or P! x {a}, a € P'. This is impossible
by Part (i) of Proposition 4.1. Hence, we have the following:

Corollary 4.2. Let I'" and I'? be two holomorphic correspondences on Pt. Then I'> o I'!
is a holomorphic correspondence on P'.

The next lemma will be useful in simplifying expressions of the form (F™)*6, or (F™).d,.
Its proof is entirely routine, so we shall leave the proof as an exercise.

Lemma 4.3. Let X be a compact complex manifold and let F' be a holomorphic corre-
spondence on X. Then (F™) = (IF)" Vn € Z,.

The final result in this section is important because it establishes that the measures
dy(F)~™(F™)*(,) appearing in Theorem 3.5 are probability measures.

Proposition 4.4. Let F' be a holomorphic correspondence on P'. Then diop(F") =
dtop(F)n vn S Z+.

The result above is obvious if F' is a map. Essentially the same reasoning applies when
F is not a map. In the definition of the topological degree, any point y € P! that
satisfies equation (3.5) is generic. Since the correspondence I' (which determines F') has
no irreducible components of the form {a} x P! or P! x {a}, a € P!, all the preimages of
each such y € P! — with, perhaps, the exception of finitely many points — is generic in
the sense of (3.5). Hence, dy,), is multiplicative under composition of correspondences.
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5. THE PROOF OF THEOREM 3.2

We begin this section with some remarks on our use of the results of Dinh—Sibony
[11]. The result we shall use is the one that leads to (3.6). The precise result is [11,
Théoréme 5.1], read together with Remarques 5.2. We state a version below specifically
for correspondences on P'. We leave it to the reader to verify our transcription of [11,
Théoreme 5.1] to the present context. It might be helpful for readers who are unfamiliar
with [11] to mention a couple of identities needed for this transcription. We shall not define
here the notion of intermediate degrees of F' of order s; we just refer to [11, Section 3.1].

Fact 5.1. Let (X,w) be a compact Kdihler manifold of dimension k and assume fX Wk =1.
Let F: X — X be a holomorphic correspondence. Let A\s(F') denote the intermediate
degree of F' of order s, s=10,1,...,k. Then:

i) Ao (1F) = A(P).
1) A\g(F) = diop(F).
In what follows wpg shall denote the Fubini—Study form normalised so that fPl wpg = 1.
The key result needed is:

Result 5.2 (Théoréme 5.1 of [11] paraphrased for correspondences of P!). Let F,, n =
1,2,3,..., be holomorphic correspondences of P Suppose that the series
> onez, (do(F1)/di(F1)) ... (do(Fn)/di(Fy)) converges. Then, there exists a probability mea-
sure p such that

dy(F) 7L dy(Fp) Y (Fp oo F)*(wrs) weak” [l as measures, as n — oo.
In fact, the convergence statement (3.6) follows from the above result by taking F,, = F
forn=1,2,3,...

The proof of Theorem 3.2. We assume that N(F) # &; there is nothing to prove other-
wise. Let us fix a z9 € N(F). Then, any Z € Z,(z) is admissible, and by Property (2)
in sub-section 2.2, assuming that n > 2, we get

10 V(Z,j-1) O V(Z,j-1) = Tj_1°Proj; 0 V(Z,j) O V()
= 77? ovz oz Vi=2,...,n.
Iterating this argument, we deduce the following:
For any n > 2, Z € &,(%) (and admissible)
= 7['? ovz jyoiz ) = ) o vizyoYPzyy Yi=1,...,n (5.1)

Let us now fiz a disc A around 0 € C such that A € D (where D is as given by Defini-
tion 2.2). Define:

K = ﬂ ™ o v, 1) © Vi, 1) (D).
xXeP1(z0)
Clearly, there is a region G € D, containing 0, such that

_ -1
(I/(XJ) OLZJ(XJ)) 1<<7T?‘U(X’1)) (K)) € G for every X € P1(20),

where U(X, 1) is as described in sub-section 2.2. From the above, from (5.1), and from
the fact that any Z € Z,,(z0) has some X € Z71(zp) as an initial 1-path, we deduce:

_ —1
for any n>1& Z € Pn(20), (V(z,n) V(2 n)) ! (( ﬂg}U(z’n)) (K)) eqG. (5.2)
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We can deduce from Definition 2.2 that K C N(F). As K has non-empty interior,
it suffices to show that for any non-negative function ¢ € C(P';R) with supp(¢) C K,
fpl @dpr = 0. Hence, let us pick some function ¢ € C(P!;R) as described. For any path
Z € Py(20), let us write

dz = (m) xm))o V(Z,n) °V(Z,n)
We adopt notation analogous to that developed in the beginning of sub-section 2.2. For
any multi-index e € [1.. L}, & = (1, ..., ), j = 1,2,3,..., let us define
e .— F;q’ ifj =1,
' re, o re(@nai=1) - if 5 > 9,

If we write Z as (z0,...,2n; @), then ®z(D) is a I'**-open neighbourhood of the point
(20, zn). Furthermore, by our constructions in sub-section 2.2, 7, }(K) N |I"°" is covered
by the sets ®z(D) as Z varies through £2,(z0). Hence, by definition:

Y @rs)e) = Y [ (Rilay) @ melay ) wrs) (53
ZePn(20) reg(®z (D))

It is routine to show that 70 x 7 is a branched covering map onto its image.

Z‘U(Z,n)
As v(z ) maps Yz ,)(D) homeomorphically onto U(Z,n), the topological degree of

0

(T X ) o V(2 ) |¢<z (D) equals the topological degree of 70 x 7 ) Let us denote

Z‘U(Z,n
this number by deg;(Z). By the change-of-variables formula, we get:

7\ * 1 n *
(F")"(wrs), @) = Z m / (po 772 © V(Z,n))(ﬂ-n ° V(z,n)) (wrs).
2eFn(z0) Yz (D)

Since ®z(D), in general, has singularities, we discuss briefly what is meant above by
“change-of-variables formula”. Note that:

e The magnitude of the form (7} ov(z ,))*(wrs) stays bounded on punctured neigh-
bourhoods of any singular point of ®z(D).

e reg(Pz(D)) after at most finitely many punctures is the image of a Zariski-open
subset of ¥z ,,)(D) under a deg;(Z)-to-1 covering map.

Given these facts, it is a standard calculation that the right-hand side of (5.3) transforms

to the last integral above. For each Z € Z,(2), let us write
degy(Z) := the degree of the map ¢z n): D — V(_Zl n)(U(Z, n)).

By the change-of-variables formula for branched coverings of finite degree, we get:

(F")"(wrs), ¢)

1 *
= 3 @@ oo e ) ovian o e ors
D

ZEe@n(Z())
= (pomyoviz n) oYz n) (T oz n oYz mn) (WFs).
Ze P (z0) degy(Z)deg, (Z) J

Q

(5.4)
The last expression follows from (5.2) and the fact that supp(¢) C K.
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Endow P! with homogeneous coordinates. Given the form of the argument made below,
we can assume without loss of generality that m; o vz ») © Yz ) (D) does not contain
both [0 : 1] and [1 : 0]. Write

Thovizn oYz = Xz Yz
where X(z ,,Y(z n) € O(D) and have no common zeros in D, and define
Yz = X(Z,n)/Yr(Z7n)7 if [0 : 1] € 71—77’71: OV(zn)° w(Zﬂl)(D)a
' Yv(Z,n)/X(Z,n% if [1 O] EWZOV(Z,n)O¢(Z,n)(D)'

From the expression for the Fubini-Study metric in local coordinates and from (5.4), we
have the estimate (where C' is a constant > 1 that is independent of n):

c €@ 2
LI ”9””“<1+|q<z,n><<>|2> 440

ZG,@n(zo) a

di (F) 7 [{((F")*(wrs), )| <

Since, by hypothesis, .% (29) is a normal family, it follows by Marty’s normality criterion
— see, for instance, Conway [9, Chapter VII/§3] — that the family

/

{% ‘n€Zy and Z € @n(zo)}

is locally uniformly bounded. As G € D, there exists an M > 0 such that
‘qzz7 n)(C)’

1+ q(z,n) Q)

Given n € Z, the number of summands in (5.4) is dgop( (F™)) = do(F)". The equality is
a consequence of Proposition 4.4 and Lemma 4.3. From it and the last two estimates, it
follows that

)Y rs) )] < C |
since, by hypothesis, do(F') < di(F).

In view of Result 5.2, taking F;,, = F forn =1,2,3,..., we have

. 1 s B
Aﬂ@d“F - nILHSOW«F ) (wrs), ) =0.

In view of our remarks earlier, the theorem follows. U

< M V(eG, neZ, andVZ € Z,(2).

M?Area(G) — 0 as n — oo, (5.5)

do(F)}n
di(F)

Remark 5.3. The reader will observe that to keep a count of multiplicities in the above
proof, it is essential that the integrands that appear be labelled by Z in £2,(zp) and by
n itself: i.e., the length of the forward iteration of F' under consideration. If we do not
make the restriction (%) about the paths to be considered in Definition 2.2, then it can
happen that, for a path (zp, ..., zn; ), there exists some j, 1 < j < N, for which the set
U(Z,j), as defined in Section 2 is not irreducible when viewed as a germ of an analytic
variety at (29,...,%;). Clearly, the label (£, ) wouldn’t then suffice to index the various
analytic irreducible components into which U(Z,j) splits. In short, the assumption of
admissibility is made so that the basic motivation for the normality set is not obscured
by too much book-keeping paraphernalia.
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6. THE PROOF OF THEOREM 3.5 AND COROLLARY 3.7

As the discussion in Section 3 preceding the statement of Theorem 3.5 suggests, its
proof relies on several notions introduced in [16]. We therefore begin this section with a
definition and a couple of results from [16].

Definition 6.1. Let X be a compact Hausdorff space and let f C X x X be a relation
of X to itself such that m1(f) = X. A set B C X is called an attractor block for f if

f(B) C B°.
We recall that, given a relation f and a set S C X, f(S) is as defined in Section 3.
Result 6.2 (McGehee, Theorem 7.2 of [16]). Let X be a compact Hausdorff space and let

f C X x X be a relation of X to itself such that m1(f) = X. Assume f is a closed set. If
B is an attractor block for f, then B is a neighbourhood of w(B; f).

Result 6.3 (McGehee, Theorem 7.3 of [16]). Let X be a compact Hausdorff space and let
f C X x X be a relation of X to itself such that m1(f) = X. Assume f is a closed set. If
A is an attractor for f and V is a neighbourhood of A, then there exists a closed attractor

block B for f such that B CV and w(B; f) = A.
We clarify that, given two subsets A and B of some topological space, B is called a
neighbourhood of A here (as in [16]) if A C B°.

Before we can give the proof of Theorem 3.5, we need one more concept. For this
purpose, we shall adapt some of the notations developed in Section 2.2. Here, F' will
denote a holomorphic correspondence on P'. Firstly: given N € Z,, we say that
(wo,w_1...,w_p; a1,...,ay) € (PHONTL x [1..L]N (see (2.1) for the meaning of L)
is a path of a backward iteration of F' starting at wg, of length N, if

(w_j,w_jH) S F;j, j=1,...,N.
In analogy with the notation in Section 2.2, we set:

P_n(wp) = the set of all paths of backward iterations
of F', of length N, starting at wg.

Next, we say that a point w € P! is a regular value of F if it is not a critical value (recall
that we have defined this in Section 3). We can now make the following definition:

Definition 6.4. Let F be a holomorphic correspondence on P!, let N € Z,, and let
wo € PL. Let W = (wo,w_1,...,w_pN; a1,...,any) € P_n(wg). We call the list
(TF(WJ), cee TF(W7 ~)) a regular branch of a backward iteration of F along W if:

1) wo,w_1,...,w_N4+1 are regular values.

2) For each j =1,..., N, TF(W7 ;) is a holomorphic function defined by

Fiw, () = m o (mlpaw,;) () V¢ € ma(DOWV,J)).
where D(W, j) is a local irreducible component of I'}, - at the point (w—j;, w—j+1)
such that: (a) D(W,j) is smooth; (b) my restricted to D(W, j) is injective; and
(¢) m(D(W, j)) D w1 (D(W,j — 1)) when j > 2.
The above is a paraphrasing — for the setting in which we are interested — of the notion
of a “regular inverse branch of F' of order N” introduced by Dinh in [10].
The following is the key proposition needed to prove Theorem 3.5.
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Proposition 6.5. Let F' be a holomorphic correspondence of P! having all the properties
stated in Theorem 8.5 and let R be a strong repeller that is disjoint from the set of critical
values of F. Then, there exists a closed set B C P! such that B° D R and such that:

i) The operator Ap := di(F)~1 A|g, where A|g is as defined in (3.3) with B replac-
ing 2, maps C(B;C) into itself.

ii) There exists a probability measure up € C(PY;R)* that satisfies upoAp = up and
such that

lim sup = 0 VypelC(B;C). (6.1)

n—oo B

A"y —[deuB

Proof. Let ag € R and let U be an open set containing R such that:

e For each w € U, there is a sequence {a,(w)}nez, such that a,(w) € F"(w) for
each n, and a,(w) — ag as n — oo.
e U contains no critical values of F'.

By Result 6.2 and Result 6.3, we can find an open neighbourhood W of R such that
W C U and W is a closed attractor block for the relation |iI'|.

Repeating the last argument once more, we can find a closed attractor block, B, for
|| such that
RCB°CcBcCWel.

By the above chain of inclusions and by the definition of the term “attractor block”, it
follows that the operator A maps C(B;C) into itself.

Claim 1. For each fized p € C(B;C), {AL[p]}nez, is an equicontinuous family.
It is easy to see that R is a closed proper subset. We can thus make a useful observation:

(*%) We can choose W so that P*\ W is non-empty. Hence, we can choose coordinates
in such a way that we may view W as lying in C, and that W € C. We shall work
with respect to these coordinates in the remainder of this proof.

Let us pick a point wgy in B (which, by construction, is a regular value) and let D(wg) be

a small disc centered at wg such that D(wp) C W. Let us fix an N > 1 and consider a
path W € &_n(wyp). Recall that, by construction:

TFW) c w. (6.2)

We can infer from (6.2) that there exists a regular branch (TF(W7 1) ,TF(W’ ny) of a
backward iteration of F' along W. To see why, first note that, as wg is a regular value

and D(wy) C W, we get:
(a1) There is an open neighbourhood Uy of wy containing only regular values.
(b1) Writing

U, := the connected component of 5 ' (Up) N TS, containing (w_1,wo),

1

and defining D(W, 1) :=any one of the irreducible components of the (local)
complex-analytic variety Uy, the function

TF(W,l) = o ( WQ!D(WJ) )71 is holomorphic on Uy.

(c1) The open set U := 'F, (w,1)(Uo) C W and hence contains only regular values.



18 GAUTAM BHARALI AND SHRIHARI SRIDHARAN

The assertion (c;) follows from the fact that U; C TF(W) C W and that the latter contains
no critical values.

Let us now, for some k € Zy, k < N — 1, assume the truth of the statements (ay), (by)
and (cg), which are obtained by replacing all the subscripts 0 and 1 in (a1), (b1) and (¢1)
(except the subscript in 71) by k — 1 and k, respectively. Now, (ajy1) follows from (cy).
Defining D(W, k + 1) in exact analogy to D(W, 1), and writing

—1
TF(W7 k+1) = M1 0 ( WQ‘D(W, k+1) ) s

the holomorphicity of (72|pyy 4 H))*l follows from (ag41). Thus (bg41) holds true. We
get (ck+1) by appealing once again to (6.2) and using the fact that Uy C W. By induction,
therefore, a regular branch of a backward iteration of F' along W exists.

Furthermore, we can conclude that:
TF(W7 N)yO -0 TF(WJ)(D(wO)) CW eC (see (xx) above).

Recall that W was arbitrarily chosen from &7_(wp) and that the arguments in the last
two paragraphs hold true for any choice of D(W,j), 1 < j < N, and for any N € Z,.
Thus, by Montel’s theorem, we infer the following important fact: the family

LZ (wy) = {TF(W7 N)yO- -0 TF(V\M) € O(D(wp)) : W € Z_n(wy) for some N € Z

& (TF(W’ Nys - oo TF(W7 1)) is a regular branch of a backward iteration of F}
is a normal family. (6.3)

Pick a ¢ € C(B;C) and let € > 0. As B is compact, there exists a number §(g) > 0
such that:
|21 — 22| < d(e) = |p(z1) —p(22)| <& Vz1,22 € B. (6.4)
We pick a ¢ € B. By taking wy = ( in the discussion in the previous paragraph, we
infer from the normality of the family % (¢) that we can find a sufficiently small number
r(g,¢) > 0 such that:

€ — ¢ <r(e,¢)and £ € B = (&) —v(C)| < d(e) V€ 1F(Q). (6.5)
Now, for each ( € B write:
IB(N,C) = {(1), W) : ¢ is some Flyy ny o0 Fy 1) in 1Z(0), We Z_y()}

If (Co,C-1,...,C—nN;x) = W is a path of backward iteration (with (y being the above (),
basic intersection theory tells us that the local intersection multiplicity of F;j with P! x

{C—j+1} at (C—j,{—j+1) equals the number of distinct branches TF(WJ) one can construct
according to the above inductive prescription (this number is greater than 1 if I3, has a
normal-crossing singularity at (¢—j,{—;+1)). From this, and from the iterative construction
of the TF(W7 ~)’s above, it follows that:

Card[ #B(N,()] = di(F)N V¢ € B. (6.6)

From (6.4), (6.5) and (6.6), we get:

[ABll(§) — APl = Yo diF) e od(C) —pod(6)

(b, W)€ IA(n.C)
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<di(F)™" Y pod(Q) —pov(é)] < e

(¥, W)€I%5(n,()
V¢ € B such that [ — (| <7r(e,€) and Vn € Z.

The above holds true for each ( € B. This establishes Claim 1.

In what follows, the term unitary spectrum of an operator on a complex Banach space
will mean the set of all eigenvalues of the operator of modulus 1, which we will denote by
Specy. Observe that Specy(Ap) > 1.

Claim 2: Spec(Ap) = {1}, and the eigenspace associated with 1 is C.

The ingredients for proving the above claim are largely those of [15, §4]. However, to
make clear the role that the properties of R play, we shall rework some of the details of
Lyubich’s argument. Let us fix a A € Specy(Ap) and let ¢y € C(B;C) be an associated
eigenfunction. Let (. € B be such that | (¢x)| = maxp |py|. By definition

di(F)~ Z ©x 0 W(G) = Apa(Ce). (6.7)
(W, W)EIB(1,Cx)

Since | (C+)| = maxp |p,|, and given (6.6), the above equality would fail unless @) o
¥(C)| = |ea(Ci)] for each ¥ occurring in (6.7). It is now obvious from this fact and from
(6.7) that py(z) = Apa(&) Vo € TF(C,). Tterating, we get

or(®) = N'or(&) VzelF(¢G), n=1,2,3,... (6.8)

Since, by construction, B C U, there exists an x, € TF"(¢,), n = 1,2,3,..., such that
&, — ag. Therefore, owing to (6.8), the sequence {\")(Cs)}nez, is a convergent se-
quence. As ) # 0 (by definition), this implies that A = 1.

Observe that, having determined that A = 1, (6.8) also gives

©x(C) = palao)- (6.9)

Note that Alp] = A[p] Ve € C(B;C). Hence, Rep) and Imyp) are also eigenvectors of A
associated to A = 1. Thus, we have the following analogue of (6.7):

di(F)™ 3" Repyow(2*) = ARepy(2*),
(v, W)€IA(1,2*)
where z* € B stands for either a point of global maximum or a point of global minimum of
Reg). Using the above as a starting point instead of (6.7) and repeating, with appropriate
modifications, the argument that begins with (6.7) and ends at (6.9), we get:
ming(Rep)) = Repy(ap) = maxp(Rep,). (6.10)
Similarly, we deduce that:

ming(Impy) = Impx(ag) = maxp(Ime)).
Combining the above with (6.10), we conclude that, for any eigenvector ¢, associated to
A =1, p) = constant. This establishes Claim 2.
To complete this proof, we need the following:
Result 6.6 (Lyubich, [15]). Let & be a complex Banach space. Let A : B — B be a

linear operator such that { A™(v)}nez, is a relatively-compact subset of & for each v € A.
Assume that Specy(A) = {1} and that 1 is a simple eigenvalue. Let h # 0 be an invariant
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vector of A. Then, there ezists a linear functional p that satisfies po A = p and u(h) =1,
and such that

A"(v) — p(v)h asn — 0o

for each v € A.

Take # = C(B;C) in the above theorem. Note that |A%[¢]| is bounded by maxp |¢|
for n = 1,2,3,... Thus, in view of Claims 1 and 2, Ap satisfies all the hypotheses of
Result 6.6. Hence (recall that the function that is identically 1 on B is an eigenvector of
Ap) there is a regular complex Borel measure pp on B such that [ pldup =1, and

A"yl _[BSOdMB

It is clear from the above equation that up is a positive measure. Hence it is a probability
measure on B. 0

lim sup
n—oo B

= 0 Vypel(B;C).

The proof of Theorem 3.5. Let B be any closed set having the properties listed in the
conclusion of Proposition 6.5. Let up be the probability measure associated to this B.
We claim that pp is given by defining:

/130d/~¢F r= /«pIBduB Vo € C(P';C).
P B

We must show that pp does not depend on the choice of B. The proof of this is exactly
as given in [15, Theorem 1]. We fix a point z € R. So, z € B for any choice of B. Thus,

/Plapdup = nlLIrolo Alp](2) (by Proposition 6.5)
= lim di(F)"A"p](2), (since TF™(2) C TF"(R) C R)

where A is as described in the passage following (3.3). The last line is independent of B.
Hence the claim.

By the above calculation, we also get fpl ldur = 1. Thus, pp is a probability measure.

Let U be the open set described at the beginning of the proof of Proposition 6.5. We
now define:

B(R) = {B C U : Bis closed, B° DR, 'F(B) C B and there exists a closed

attractor block B, for WF! st. BC B, C B, C U} .

We see from the proof of Proposition 6.5 that, owing to our hypotheses, 28 is non-empty.

Hence
UF,R) = UBG%(R) B°

is a non-empty open set that contains R. Let z € U(F,R). There exists a B € B such
that z € B°. A close look at the essential features of its proof reveals that this B has all
the properties listed in the conclusion of Proposition 6.5. Consider any ¢ € C(P!;C). We
now apply Lemma 4.3 to get

di(F)""((F")*(92), ) = di(F) "A"[¢](2) (from (3.4) and Lemma 4.3)
= AB[p](2) (since TF"(z) ¢ TF™(B°) C B)
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— [Plcpd,uF as n — 00, (6.11)

and this holds true for any z € U(F,R). The last line follows from our observations above
on pr. Now note that, by construction, 'F(z) C U(F,R) for each z € U(F,R). Therefore,
in view of equation (3.3), it follows from (6.11) that F*(ur) = d1(F)ur. O

We are now in a position to provide:

The proof of Corollary 3.7. Recall that, by definition, for any Borel measure p, Fi(u) :=
('F)*(u). Thus, the proof of Corollary 3.7 involves, in each case, applying one of the
results above to TF.

The proof (i) follows from Fact 3.1 applied to {F.

In view of Definitions 3.3 and 3.4 and the hypothesis of part (ii), TF satisfies the
conditions of Theorem 3.5 (i.e., with TF" replacing F'). Thus, (i) follows from Theorem 3.5.
O

7. EXAMPLES

The purpose of this section is to provide concrete examples that illustrate some of our
comments in Sections 1 and 3. We begin by showing that it is easy to construct holo-
morphic correspondences on P! that satisfy all the conditions stated in Theorem 3.5, but,
unlike the examples discussed in Remark 3.6, have “large” repellers. Next, we shall discuss
one of the classes of holomorphic correspondences studied by Bullett and collaborators.
For each correspondence F in this class, do(F) = di(F) = 2, and we shall show that
Theorem 3.5 and Corollary 3.7(ii) are applicable to these examples.

7.1. Holomorphic correspondences addressed by Theorem 3.5 having large re-
pellers. Choose a complex polynomial p with deg(p) > 2 such that its Julia set J, & P!
and such that no critical values of p lie in J,. It follows — see, for instance, [15, §4] —
that there is a compact set B such that B° O J, and avoids the critical values of p, and
such that p~!(B) C B°. Next, choose a polynomial @ with deg(Q) > 2 and having the
following properties:

a) @ has an attractive fixed point, call it (p, in Jp;
b) B lies in the basin of attraction (under the action of @) of (p.

In view of (b), we can find a positive integer N that is so large that
e QV(B) C B
o deg(Q)" > deg(p).

Let us write ¢ := QY.

Next, we define:

Ty o= {([z0 21, [wo : wi]) = w§™ P2y — w§™ Pz g(wn /wo) = 0},
Ty = {([z0: z1], [wo : wn]) : wlzgeg(p) - wozgeg(p)p(zl/ZO) =0}.

The projective coordinates are so taken that [0 : 1] stands for the point at infinity.

We set I' :=T'1 +I'y and let F' denote the correspondence determined by I'. Clearly
do(F) = deg(q) + 1 > deg(p) + 1 = di(F). In this type of construction, we will have
do(F) > di(F) in general. However, apart from satisfying the rather coarse properties (a)
and (b) above, p and @ can be chosen with considerable independence from each other.
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Thus, this construction will also produce holomorphic correspondences F that satisfy
do(F) = di(F).

By construction, F(B) C B°. In other words, B is an attractor block for the relation
I"|. Therefore, it follows from Result 6.2 and Definition 3.3 that F' has a repeller R C B°;
this repeller is just w(B;|I]).

It is easy to see that

M UFEHB) € wiBsT)

n>0k>n

(the reader may look up [16, Theorem 5.1] for a proof). The above implies that
Jp, € R C B°.

Thus, the correspondence F' defined above has a repeller that is disjoint from the set
of critical values of F'. Owing to (a) and (b) above, for each w € B°, there exists a
point a,(w) € TF*(w) such that a,(w) — (p. Hence, R is a strong repeller. Unlike the
examples in Remark 3.6, R is “large” in a certain sense.

7.2. On the mating between a quadratic map and a Kleinian group. The ideas
developed in the last section are of relevance to the correspondences — alluded to in
Section 1 — introduced by Bullett and his collaborators. We shall examine one such class
of correspondences. We shall not elaborate here upon what precisely is meant by the
mating between a quadratic map on P! and a Kleinian group. The idea underlying this
concept is simple, but a precise definition requires some exposition. We will just state here
(rather loosely) that such a mating provides a holomorphic correspondence F on P!, and
partitions P! into an open set and two-component closed set (denoted below by A) — both
totally invariant under F' — such that the action of the iterates of F' on (P!\ A) resembles
the action of the given Kleinian group on its regular set, and the iterates of distinguished
branches of F and IF — on the components of A, respectively — resemble the dynamics of
the given quadratic map on its filled Julia set. We refer the reader to the introduction of
[6] or to [5, §3]. The example we present here is that of a holomorphic correspondence on
P! that realises a mating between certain faithful discrete representations r in PSLy(C)
of

G := the free product of Zy and Zs,
and a quadratic map ¢, : z — 22 + ¢. In this discussion,  and ¢ will be such that:

e (. is hyperbolic and its filled Julia set, K(g.), is homeomorphic to a closed disc;
e the regular set of r, Q(r), is connected.

The fact that is pertinent to this discussion is that the mating of the above two objects is
realisable as a holomorphic correspondence F' on P'. This is the main result of the article
[5] by Bullett and Harvey. For such an F', do(F) = di(F) = 2. (In fact, [5, Theorem 1]
establishes the latter fact for a much larger class of maps g.. For simplicity, however, we
shall limit ourselves to the assumptions above.)

We shall show that the above example satisfies all the conditions of Theorem 3.5 and
briefly indicate how the hypothesis of Corollary 3.7(ii) applies to it as well.

Let I' denote the holomorphic 1-chain that determines the correspondence provided by
[5, Theorem 1]. Let us list some of the features of F' that are relevant to the present
discourse (we will have to assume here that readers are familiar with [5]):
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1) There exists a closed subset A C P! that is totally invariant under F and is the
disjoint union of two copies Ay and A_ of a homeomorph of a closed disc.
2) There exist two open neighbourhoods U~ and V'~ of A_ such that

a) V- CcU™;

b) 7, (U7) N || is the union of the graphs of two functions f;r e O(U),
J=12

o) ff (V) =U";

d) There is a quasiconformal homeomorphism of U~ onto an open neighbourhood
w™ of K(g.) that carries A_ onto K(q.), OA_ onto the Julia set of ¢, is
conformal in the interior of A_, and conjugates ffr to qef,--

e) U )NU =@.

3) There exist two open neighbourhoods UT and V*, V+ C U*, of A; and a pair of
functions f;, f; € O(U™") such that

m U] = {700 : ¢ e UTFU{(£(0).0) s (e U™},
and the analogues of the properties 2(c)-2(e) obtained by swapping the “+” and
the “—” superscripts hold true.
4) () =f, andU-NUT = 2.

We must record that property (2) is stated in [5, §3] without some of the features stated
above. However, it is evident from Sections 3 and 4 of [5] that (under the assumptions
stated at the beginning of this subsection) there is a hybrid equivalence, in the sense of
Douady—Hubbard, between f1+’A_ and qcl,c(qc). The Julia set of ¢., J(q.), is a strong
repeller for ¢, in the sense of Definition 3.4. Furthermore (see [15, §4], for instance) there
exists a neighbourhood basis of J(q.), N1 = {W4,}, say, such that

W, C w Nw™, and ¢;'(Wa) C W, VW, €N. (7.1)

Also note that, from properties 2(a)—2(e), the generic number of pre-images of any w € U~
under F' equals 2. From this and (7.1), we can deduce that there exists a closed set B
such that 9A_ C B° C B, 'F(B) C B° and

oA = () F"(B).

n>0

Since 'F(B) C B°, it is not hard to show (see [16, Theorem 5.4], for instance, for a proof)
that the right-hand side above equals w(B;|T"|). Then, by definition, we have:

I) OA_ is a repeller for F.

Furthermore, as J(q.) is a strong repeller for the map g., invoking property 2(d) (along
with the fact that the generic number of pre-images of any w € U~ under F' equals 2)
gives us:

IT) F has the property described in Definition 3.4 with R = A_ and for some annular
neighbourhood U of 0A_, whence OA_ is a strong repeller.

Now, let Q : U~ — w™ be the quasiconformal homeomorphism such that ff =
Q'og.oQ. Assume OA_ contains a critical value of f;". By the construction described
above, and by property 2(d), OA_ is totally invariant under f;". Hence, there exists a
point ¢y € AA_ such that (f;7)/ (o) = 0. There is a small connected open neighbourhood
G of (p such that G C U~ and G \ {¢o} contains two distinct pre-images under f;" of
each point in U~ belonging to a sufficiently small deleted neighbourhood of ffr (o). As
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ge = Qo ffr o Q™! and Q is a homeomorphism, an analogous statement holds true around
Q(¢o) € J(gc). By the inverse function theorem, this is impossible because J(¢.) contains
no critical points of g.. The last statement is a consequence of hyperbolicity — see, for
instance [17, Theorem 3.13]. Hence, our assumption above must be false. Finally, by
property 2(e), any critical values of f; lie away from A_. Thus,

IIT) F has no critical values on OA_.

We see that the properties (I)—(III) above are precisely the conditions of Theorem 3.5 with
R =0A_.

We conclude our discussion of the present example by observing that, in view of property
(3) above and an argument analogous to the one that begins with the equation (7.1), with
F replacing fF and A, replacing A_, we can also show that Corollary 3.7(ii) applies to
this example.
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