
ON THE GROWTH OF THE BERGMAN METRIC

NEAR A POINT OF INFINITE TYPE

GAUTAM BHARALI

Abstract. We derive optimal estimates for the Bergman kernel and the Bergman metric for
certain model domains in C2 near boundary points that are of infinite type. Being unbounded
models, these domains obey certain geometric constraints — some of them necessary for a non-
trivial Bergman space. However, these are mild constraints: unlike most earlier works on this
subject, we are able to make estimates for non-convex pseudoconvex models as well. In fact,
the domains we can analyse range from being mildly infinite-type to very flat at infinite-type
boundary points.

1. Introduction

Let Ω ⊂ C2 be a pseudoconvex domain (not necessarily bounded) having a C∞-smooth
boundary. Let p ∈ ∂Ω be a point of infinite type: i.e., for each N ∈ Z+, there exists a
germ of a 1-dimensional complex-analytic variety through p whose order of contact with ∂Ω at
p is at least N . If ∂Ω is not Levi-flat around p, then there exist local holomorphic coordinates
(z, w;Up) centered at p such that

Ω ∩ Up = {(z, w) ∈ Up : Imw > F (z) +R(z,Rew)}, (1.1)

where F is a smooth, subharmonic, non-harmonic function defined in a neighbourhood of z = 0
that vanishes to infinite order at z = 0; R(· , 0) ≡ 0; and R is O(|z||Rew|, |Rew|2). Given
the infinite order of vanishing of F at z = 0, many of the ideas for estimating the growth the
Bergman kernel and its partial derivatives — evaluated on the diagonal — as one approaches a
finite-type boundary point are no longer helpful. But some of the ideas alluded to can be useful
(see, e.g., item (2) below) if the function F introduced in (1.1) is the restriction of a global
subharmonic, non-harmonic function. Such a function gives us a model domain

ΩF := {(z, w) ∈ C2 : Imw > F (z)}, (1.2)

which approximates ∂Ω to infinite order along the complex-tangential directions at p. This
paper studies the growth the Bergman kernel (evaluated on the diagonal) and the Bergman
metric on ΩF as one approaches (0, 0) ∈ C2, with certain reasonable conditions on F so that:

• the Bergman space for ΩF — which we denote by A2(ΩF ) := L2(ΩF ,C) ∩O(ΩF ) — is non-
trivial; and
• the problem just described is tractable despite the difficulties arising from F vanishing to

infinite order at z = 0.

The model domains defined by (1.2) are reminiscent of the domains studied in [2] but, in fact,
we shall study a much wider class of model domains than those introduced in [2]. To elaborate:
the domains studied in the latter paper satisfied a condition (∗) — refer to [2, page 2] — which
involved a technical growth condition that turns out to be unnecessary. For the domains ΩF

that we consider, in this paper F will just be a radial function. I.e., it will satisfy the condition

(•) F (z) = F (|z|) ∀z ∈ C.

2010 Mathematics Subject Classification. Primary: 32A36; Secondary: 32A25, 32Q35.
Key words and phrases. Bergman–Fuchs formulas, Bergman kernel, Bergman metric, infinite type, optimal

estimates.

1



2 GAUTAM BHARALI

While the condition (•) limits the sorts of domains of the form (1.2) that we wish to study, there
are two reasons for restricting our attention to the case where F is radial:

(1) A recurring technique for obtaining the kind of estimates that we seek is the use of scaling:
information on, say, the Bergman kernel at the unit scale is classical, while an under-
standing of KΩ(z, w) as Ω 3 (z, w) → (0, 0) (where (0, 0) ∈ ∂Ω) is obtained by rescaling
appropriately to unit scale: see, for instance, [5] by Diederich et al., [14] and [15] by Nagel
et al., [13] by McNeal. These methods do not seem to yield optimal estimates, even just
for model domains of the form (1.2), if F vanishes to infinite order at z = 0 and F behaves
differently along different real directions in C. The work of Kim–Lee [8] — who examine
a class of convex domains that form a proper subclass of the class of domains we shall
study — suggests strongly that our problem is more tractable if F is radial.

(2) Once we assume that F is radial and ∂ΩF is not Levi-flat, it follows that F (z) > 0
∀z ∈ C \ {0}: see part (a) of Theorem 1.2 below. Then (provided one has a localisation
theorem for the Bergman kernel for ΩF ) the arguments of Boas et al. in [3] imply that
information on the growth of the Bergman kernel or the Bergman metric for ΩF yields
analogous information for Ω as one approaches p through Ω∩Up, where Up is as introduced
by (1.1) and the pair (Ω, p) satisfies the assumptions stated prior to (1.2).

The function KΩ introduced above is defined as follows: if, for a domain Ω ⊂ C2, BΩ : Ω×Ω −→
C denotes the Bergman kernel for Ω, then KΩ(z, w) := BΩ

(
(z, w), (z, w)

)
. We will abbreviate

KΩF as KF .

What enables us to so significantly weaken the condition (∗) in [2, page 2] to (•) above, and
yet expect non-trivial results, is a localisation principle for the Bergman kernel and the Bergman
metric by Chen et al. [4]: see Section 3 for details.

With these ingredients, we get the optimal expressions for the growth of the quantities con-
sidered — as the inequalities (1.3) and (1.4) below show. We briefly summarise where those
inequalities hold:

(i) We get upper bounds on KF and on the Bergman metric for ΩF that hold in a family of
approach regions for (0, 0) ∈ ∂ΩF comprising regions with arbitrarily high orders of contact
with ∂ΩF at (0, 0), our bounds being independent of the approach region.

(ii) There exists an ΩF -open neighbourhood ω of (0, 0) such that our lower bound for KF holds
true on ω ∩ ΩF .

It is well known that, even if F is radial, KF (z, w) & ‖(z, w)‖−2 is the best that one expects
(for non-tangential approach) without any additional information on F . For instance: with the
additional information that (0, 0) ∈ ∂ΩF is of finite type, we get optimal estimates because, in
this case, we can find constants C, r > 0, and M ∈ Z+ such that

B2(0; r) ∩ {(z, w) : Imw > C|z|2M} ⊂ ΩF ∩ B2(0; r)

⊂ B2(0; r) ∩ {(z, w) : Imw > (1/C)|z|2M}.

Here, we can make precise estimates by exploiting the simplicity of the prototypal function
z 7−→ |z|2M . When F vanishes to infinite order at 0, there is no obvious notion of a prototype
for F . However, F exhibits, in some sense, a “controlled infinite-order vanishing” at 0 if it
satisfies the condition stated right after part (a) of Theorem 1.2. This condition is motivated
by the fact that it encompasses a very large class of domains, ranging from the “mildly infinite-
type” to the very flat at (0, 0): see the examples in Section 2. To state this condition, we need
the following:

Definition 1.1. An increasing function g : [0, R] −→ R is said to satisfy a doubling condition
if g(0) = 0 and there exists a constant σ > 1 such that

2g(x) ≤ g(σx) ∀x ∈ [0, R/σ].



GROWTH OF THE BERGMAN METRIC 3

We will call the constant σ > 1 a doubling constant for g.

We shall also need the following notation. Let f : [0,∞) −→ R be a strictly increasing
function and let f(0) = 0. We define the function Λf as

Λf (x) :=

{
−1/ log(f(x)), if 0 < x < f−1(1),

0, if x = 0.

Theorem 1.2. Let F be a C∞-smooth subharmonic function on C that vanishes to infinite order
at 0 ∈ C and is radial (i.e., satisfies condition (•) above). Suppose the boundary of the domain
ΩF := {(z, w) ∈ C2 : Imw > F (z)} is not Levi-flat around (0, 0).

(a) Let f be given by the relation f(|z|) = F (z) ∀z ∈ C. Then, f is a strictly increasing
function on [0,∞) and limr→∞ f(r) = +∞.

Assume that there exists a constant R ∈
(
0, f−1(1)

)
such that Λf |[0,R] satisfies a doubling

condition. Then:

(b) There exists a constant C1 > 0 and, for each α > 0 and N ∈ Z+, there exists a constant
r(α,N) > 0 such that

(1/C1)(Imw)−2
(
f−1(Imw)

)−2 ≤ KF (z, w) ≤ C1(Imw)−2
(
f−1(Imw)

)−2
(1.3)

∀(z, w) ∈ Aα,N ∩ {(z, w) : Imw < r(α,N)},
where Aα,N denotes the approach region

Aα,N :=
{

(z, w) ∈ ΩF :
√
|z|2 + |Rew|2 < α(Imw)1/N

}
.

(c) Furthermore, there exists a constant r0 > 0 (independent of all the parameters above) such
that the lower bound in (1.3) holds for all (z, w) ∈ ΩF ∩ {(z, w) : Imw < r0}.

A further piece of notation: we shall abbreviate ds2
ΩF

(p; ξ, ξ) — i.e., the Bergman metric for

ΩF at (p, ξ), which gives the square of the Bergman norm of ξ ∈ T 1,0
p ΩF — as ds2

F (p; ξ). Our
next theorem provides estimates for the Bergman metric of ΩF as one approaches (0, 0) ∈ ΩF .

Theorem 1.3. Let ΩF be the domain in C2 described by Theorem 1.2. Identify T 1,0ΩF with
ΩF×C2 via the identification ξ = ξ1

(
∂/∂z|p

)
+ξ2

(
∂/∂w|p

)
↔(p; ξ1, ξ2) ∈ ΩF×C2. Then, there

exists a constant C2 > 0 and, for each α > 0 and N ∈ Z+, there exists a constant τ(α,N) > 0
such that

(1/C2)
((
f−1(Imw)

)−2|ξ1|2 + |Imw|−2|ξ2|2
)
≤ ds2

F (z, w; ξ)

≤ C2

((
f−1(Imw)

)−2|ξ1|2 + |Imw|−2|ξ2|2
)

(1.4)

∀(z, w; ξ) ∈
(
Aα,N ∩ {(z, w) : Imw < τ(α,N)}

)
× C2,

where Aα,N is the approach region introduced in Theorem 1.2.

We emphasise: what makes optimal estimates in the infinite-type case — even with the sim-
plifying assumption (•) — challenging is that there is no obvious prototype that describes the
behaviour of the function F at 0 ∈ C. In the finite-type case, the “right” prototype for the F
in (1.1) (and how this prototype changes as the point p varies) is dictated by Taylor’s theorem:
this is the basis of the diverse estimates derived in the papers cited above. In contrast, due to
the challenge just mentioned, there are very few works in the infinite-type case: see, for instance,
[8, 2, 12]. The set-up in [8, 2] is the closest to that of Theorems 1.2 and 1.3. Theorem 1.2 sub-
sumes the main result in [2]. This is because (along with the features of F already discussed)
our doubling condition on Λf is more permissive than the control on Λf required in [2] (see
Section 3.3 for details). In [8], the domains ΩF are required to satisfy the following conditions
(with f , as in Theorem 1.2, such that f(|z|) = F (z) ∀z ∈ C):

• f ′′(x) > 0 ∀x > 0; and
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• Λf extends smoothly to x = 0 and vanishes to finite order at 0.

The second condition does not allow Kim–Lee to study in [8] such ΩF that are either “mildly
infinite-type” or very flat at (0, 0). The conditions stated in Theorem 1.2 do allow us to analyse
ΩF of the latter kind: an assertion that will be clearer through the examples in Section 2.

Let us recall what is meant by vanishing to infinite order at 0. In the context of the domains
ΩF , we mean that the function f is of class C∞([0,∞)), and f (n)(0) = 0, limx→0+ f(x)/xn = 0
for every n ∈ N.

A few analytic and geometric preliminaries are needed before the proofs of our main theorems
can be given. It might be helpful to get a sense of the key ideas of our proof. A discussion of
our method, plus the role of the localisation principle in [4] mentioned above, are presented in
Section 3. Section 4 is devoted to essential quantitative lemmas. The proofs of the main results
will be presented in Sections 5 and 6.

2. Examples

This section is devoted to presenting examples of domains of the form ΩF that satisfy the
conditions of Theorems 1.2 and 1.3. They are such that the point (0, 0) ∈ ∂ΩF is a point of
infinite type, but ∂ΩF will — as we shall see — be flat to varying degrees in these examples.

Let F and f be as in Theorem 1.2. Since F is assumed to be radial and subharmonic, it is
useful to recall the expression for the Laplacian on C in polar coordinates:

4 :=
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
,

where we write z = reiθ. In view of the assumption F (reiθ) = f(r) ∀r > 0 and ∀θ ∈ R, we
immediately have the following:

Lemma 2.1. Let F : C −→ R be a radial function and let f : [0,∞) −→ R be such that

F (reiθ) = f(r) ∀r ≥ 0 and ∀θ ∈ R, where f ∈ C2
(
[0,∞)

)
. Suppose f (n)(x) = o(x2−n) as

x→ 0+ for n = 1, 2. Furthermore, if

f ′′(x) + x−1f ′(x) ≥ 0 ∀x > 0,

then F is subharmonic on C.

Our first example features the familiar functions f(x) = e−1/xp , x > 0 (where p > 0), which
vanish to infinite order at x = 0.

Example 2.2. A class of domains ΩF satisfying the conditions of Theorems 1.2 and 1.3, which
includes domains for which ∂ΩF is mildly infinite-type at (0, 0).

Consider the function f : [0,∞) −→ [0,∞) described by the following conditions:

(a) Fixing a constant p > 0,

f(x) :=

{
e−1/xp , if 0 < x < 1/2,

0, if x = 0.

(b) f |[1/2,∞) is so defined that f |(0,∞) is of class C∞ and strictly increasing, the function
F : C −→ [0,∞) given by F (z) := f(|z|) is subharmonic on C, and limx→∞ f(x) = +∞.

We shall soon see why it is possible to satisfy all of the conditions listed in (b). But first: notice
that if p 6∈ Z+, then Λf does not extend smoothly to x = 0 — which places Example 2.2 outside
the realm considered by Kim–Lee in [8]. We shall see that the conditions of Theorems 1.2
and 1.3 are satisfied for p arbitrarily close to 0. With f as above, when p� 1 we say that ∂ΩF

is mildly infinite-type at (0, 0).
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Let us write
φp(x) := e−1/xp ∀x ∈ (0, 1).

We compute:

φ′p(x) = px−(p+1)e−1/xp
(
> 0 ∀x ∈ (0, 1)

)
,

φ′′p(x) = e−1/xp ·
(
p2x−2(p+1) − p(p+ 1)x−(p+2)

)
.

Clearly
φ′′p(x) + x−1φ′p(x) > 0 ∀x : 0 < x < 1. (2.1)

It is well-known (we shall skip calculating further higher-order derivatives) that φp extends to
[0, 1) to belong to C∞([0, 1)) and vanishes to infinite order at 0. In view of (2.1) and Lemma 2.1,
we conclude that the function Φp(z) := φp(|z|) is subharmonic on the open unit disc.

It is easy to extend φp|(0,1/2] to a C∞ function on (0,∞) by matching the n-th derivative at

1/2, of some smooth function on [1/2,∞), with φp
(n)(1/2), n ∈ N. If we call this extension f

and let F be as given by (b), then, as 4Φp is strictly positive on the circle {z ∈ C : |z| = 1/2}
(see (2.1) above), we can also arrange for 4F > 0 on {z ∈ C : |z| ≥ 1/2} and, indeed, for f to
have all the properties stated in (b) above.

To complete the discussion of Example 2.2, we must show that Λf satisfies a doubling condi-

tion. Here, Λf (x) = xp ∀x ∈ [0, 1/2]. Hence, if we fix some σ ≥ 21/p (> 1), then we have

2Λf (x) ≤ Λf (σx) ∀x ∈ [0, 1/2σ].

Hence, ΩF satisfies the conditions of Theorems 1.2 and 1.3. J

Our next example is an illustration of a domain ΩF where ∂ΩF may be described to be
extremely flat at (0, 0). There are some commonalities in the methods used in [8] and in this
paper, which we shall elaborate on in Section 3. The key difference between the two approaches
is that Kim–Lee rely on scaling methods in [8] to complete their proofs. Although we seek
slightly different conclusions from those in [8], if we were to rely on scaling methods, then we
would need a non-trivial Taylor approximation of Λf (x) around x = 0, as is the case in [8]. This
is just not available for the Λf in Example 2.3, which is the relevance of this example.

Example 2.3. A domain ΩF satisfying the conditions of Theorems 1.2 and 1.3 such that ∂ΩF

is extremely flat at (0, 0).

Let ψ be the function φ1|(0,1/2), where φ1 is as introduced in Example 2.2. Now consider the

function f : [0,∞) −→ [0,∞) described by the following conditions:

(a′) With ψ as above,

f(x) :=

{
e−1/ψ(x), if 0 < x < 1/2,

0, if x = 0.

(b′) f |[1/2,∞) is so defined that f |(0,∞) is of class C∞ and strictly increasing, the function
F : C −→ [0,∞) given by F (z) := f(|z|) is subharmonic on C, and limx→∞ f(x) = +∞.

As in the discussion of Example 2.2, let us write

φ(x) := e−1/ψ(x) ∀x ∈ (0, 1).

We shall omit the essentially elementary calculations showing that φ extends to [0, 1) to belong
to C∞([0, 1)) and vanishes to infinite order at 0. Just to indicate the calculations needed: the last
statement follows from the Faá di Bruno formula for the higher derivatives of the composition
of two univariate functions (see [10, Chapter 1], for instance) and the fact that

lim
x→0+

en/x
√
e−1/ψ(x) = lim

x→0+
en/x exp

(
−2−1e1/x

)
= lim

y→0+

e−1/2y

yn
= 0

for every n ∈ Z+.
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However, it is useful to calculate couple of derivatives:

φ′(x) = x−2e1/x exp
(
−e1/x

) (
> 0 ∀x ∈ (0, 1)

)
,

φ′′(x) = exp
(
−e1/x

)
·
(
x−4e2/x − x−4e1/x − 2x−3e1/x

)
.

Clearly
φ′′(x) + x−1φ′(x) > 0 ∀x : 0 < x < 1. (2.2)

By (2.2) and Lemma 2.1, we deduce that Φ(z) := φ(|z|) (with Φ(0) := 0) is subharmonic on the
open unit disc. By arguments analogous to those for Example 2.2, it is easy to extend φ|(0,1/2]

to a C∞ function f defined on (0,∞) so that f has all the properties listed in (b′).

To complete the discussion of Example 2.3, we must show that Λf satisfies a doubling condi-
tion. Here, Λf (x) = ψ(x) ∀x ∈ [0, 1/2]. Fix an σ such that

(σ − 1)(log 2)−1 ≥ 1/2.

Then, whenever 0 < σx ≤ 1/2, we have

σx ≤ (σ − 1)(log 2)−1 ⇒ log 2− 1

x
≤ − 1

σx
,

which implies that 2ψ(x) ≤ ψ(σx) whenever 0 ≤ σx ≤ 1/2. Therefore, ΩF satisfies the condi-
tions of Theorems 1.2 and 1.3. J

3. Preliminaries

This section is devoted to introducing the key ideas underlying the proofs in this paper. To
this end, we begin by introducing some of the notation that we shall frequently use.

3.1. Common notations. We fix the following notation.

(1) D will denote the open unit disc in C with centre at 0, while D(a, r) will denote the open
disc in C with radius r > 0 and centre a.

(2) For ξ ∈ C2 (or, in general, in Cn), ‖ξ‖ will denote the Euclidean norm. Given points
z, w ∈ Cn, we shall commit a mild abuse of notation by not distinguishing between points
and tangent vectors, and denote the Euclidean distance between them as ‖z − w‖.

3.2. On the lower bounds presented in Theorems 1.2 and 1.3. We now present an
overview of how we shall derive the lower bounds given by Theorems 1.2 and 1.3, which are
the non-trivial parts of these results. Implicit in both these theorems is the fact that A2(ΩF ) is
non-trivial. This, and a lot else, follows from the following localisation result. We are able to
invoke this result owing to the conclusions of part (a) of Theorem 1.2.

Result 3.1 (paraphrasing [4, Lemma 3.2] by Chen–Kamimoto–Ohsawa). Let Ω := {(z, w) ∈
Cn × C : Imw > ρ(z)}, where ρ is a non-negative plurisubharmonic function such that ρ(0) = 0
and lim‖z‖→∞ ρ(z) = +∞. Let V b U be two open neighbourhoods of 0 ∈ ∂Ω. Then, there is a
constant δ ≡ δ(U, V ) > 0 such that

KΩ(z, w) ≥ δKΩ∩U (z, w) ∀(z, w) ∈ Ω ∩ V, (3.1)

ds2
Ω(z, w; ξ) ≥ δds2

Ω∩U (z, w; ξ) ∀(z, w; ξ) ∈
(
Ω ∩ V

)
× Cn+1. (3.2)

This localisation result allows us to obtain lower bounds for the quantities of interest by
finding lower bounds for the respective quantities associated to ΩF ∩ ∆, where ∆ is a well-
chosen bidisc centered at (0, 0) ∈ ∂ΩF . We shall obtain the latter lower bounds by appealing to
certain extremal problems — sometimes referred to as the Bergman–Fuchs formulas — that give
the values of the Bergman kernel (evaluated on the diagonal), and of the Bergman metric, for
bounded domains: see [1] by Bergman (also see [6] by Fuchs).
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In this paragraph, Ω will denote an arbitrary domain in C2 (we restrict ourselves to C2 to
avoid having to define further notation). One of the Bergman–Fuchs formulas is:

KΩ(z, w) = sup

{
|ϕ(z, w)|2

‖ϕ‖2L2(Ω)

: ϕ ∈ A2(Ω)

}
∀(z, w) ∈ Ω. (3.3)

A related formula is known for ds2
Ω. To see this, we need the following auxiliary quantity

JΩ(z, w; ξ) := inf
{
‖ϕ‖2L2(Ω) : ϕ ∈ A2(Ω), ϕ(z, w) = 0 and

∂zϕ(z, w)ξ1 + ∂wϕ(z, w)ξ2 = 1
}
, (z, w) ∈ Ω, ξ ∈ C2\{0}. (3.4)

The Bergman–Fuchs formula for ds2
Ω is

ds2
Ω(z, w; ξ) =

1

KΩ(z, w) JΩ(z, w; ξ)
∀(z, w; ξ) ∈ Ω× (C2\{0}). (3.5)

How these formulas help in deriving the lower bounds given by Theorems 1.2 and 1.3 is
summarised as follows:

• Step 1: We choose a suitable bidisc ∆ centered at (0, 0) (determined just by f). To obtain a
lower bound for KΩF∩∆(z, s+ it), we just need to find a suitable function ϕt ∈ A2(ΩF ∩∆),
t > f(|z|), such that — owing to (3.3) — ‖ϕt‖2L2(ΩF∩∆) has an upper bound that induces the

lower bound in (1.3).

• Step 2: The latter task reduces to estimating an integral over a region in R4 whose bound-
aries are determined by f . The doubling condition is used to break up this region of inte-
gration into sub-domains on which the relevant integral is easier to estimate to sufficient
precision that we get the desired upper bound.

• Step 3: In view of (3.4), we must to find a suitable function ϕ̃t belonging, this time,
to the class

{
ϕ ∈ A2(ΩF ∩∆) : ϕ(z, w) = 0 and ∂zϕ(z, w)ξ1 + ∂wϕ(z, w)ξ2 = 1

}
in order to

deduce a lower bound for ds2
ΩF∩∆(z, s+ it; ξ). In view of (3.5), we need to obtain an upper

bound of a specific form for ‖ϕ̃t‖2L2(ΩF∩∆). A procedure analogous to that described in

Step 2 applies in computing the latter upper bound.

The final estimates hinted at by the above summary lead to the lower bounds that we want — i.e.,
for the domain ΩF — by the use of Result 3.1.

To conclude this section, we elaborate upon some comments made in Section 1 about our
condition on Λf in comparison to [2].

3.3. Relation to the main result in [2]. We give a justification of the assertion in Section 1
that Theorem 1.2 subsumes the main result in [2]. Given our statements on the condition (∗)
in [2], it suffices to show that the condition imposed on Λf in [2] implies that Λf |[0,R] satisfies a

doubling condition for some R > 0. To this end, recall that for F (and the associated f) as in
[2, Theorem 1], there exist constants ε0 > 0 and B ≥ 1 such that

(1/B)χ(x) ≤ Λf (x) ≤ Bχ(x) ∀x ∈ [0, ε0], (3.6)

where χ ∈ C([0, ε0]) is an increasing function such that χp is convex on (0, ε0) for some p > 0.
It follows that, setting ν := min{m ∈ N : 2m ≥ p}, χ|[0,2−(ν+1)ε0] satisfies a doubling condition.

Write R := 2−(ν+1)ε0 and let σ > 1 be a doubling constant for χ|[0,R]. Let N ∈ Z+ be such that

2N ≥ 2B2. Then, by (3.6)

2Λf (x) ≤ 2Bχ(x) ≤ 2N (1/B)χ(x) ≤ (1/B)χ(σNx) ≤ Λf (σNx) ∀x ∈ [0, R/σN ].

In view of the above discussion, it follows that Theorem 1.2 subsumes the main result in [2].
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4. Technical lemmas

We present some lemmas that play a supporting role in the proofs of Theorems 1.2 and 1.3.

Lemma 4.1. Let f : [0,∞) −→ R be a strictly increasing function satisfying f(0) = 0. Let
Λf |[0,R] satisfy a doubling condition for some R ∈

(
0, f−1(1)

)
. Write Gf := Λ−1

f . There exist

constants T,C ′ > 0 such that

0 ≤ Gf (2t)2n −Gf (t)2n ≤ C ′Gf (t)2n ∀t ∈ [0, T ],

n = 1, 2.

Proof. Let σ > 1 be a doubling constant for Λf . Write T := Λf (R/σ). Since, by the doubling
condition,

2Λf (x) ≤ Λf (σx
)
∀x ∈ [0, R/σ], (4.1)

it follows that

Gf
(
2Λf (x)

)
≤ σx ∀x ∈ [0, R/σ].

This inequality holds on the interval stated since, by (4.1), 2Λf (x) ∈ dom(Gf ) ∀x ∈ [0, R/σ].
Parametrising the latter interval by Gf : [0, T ] −→ [0, R/σ], we can take x = Gf (t), t ∈ [0, T ],
in the last inequality to get

Gf (2t) ≤ σGf (t) ∀t ∈ [0, T ].

This implies:

Gf (2t)−Gf (t) ≤ (σ − 1)Gf (t) ∀t ∈ [0, T ]. (4.2)

Since

Gf (2 ·)2 −G 2
f =

(
Gf (2 ·)−Gf

)2
+ 2
(
Gf (2 ·)−Gf

)
Gf ,

and

Gf (2 ·)4 −G 4
f =

(
Gf (2 ·)2 −G 2

f

)2(
Gf (2 ·)−Gf

)2
+ 2
(
Gf (2 ·)2 −G 2

f

)2(
Gf (2 ·)−Gf

)
Gf + 2

(
Gf (2 ·)2 −G 2

f

)2
G

2
f ,

we can find an appropriate constant C ′ > 0 so that the desired conclusion follows from (4.2). �

The aim of our next two lemmas is to estimate the norms of certain functions in A2(ΩF ∩
∆), where ∆ is an appropriately chosen bidisc, from which we shall build candidates for such
functions as can be used in the argument sketched in Steps 1–3 in Section 3.

Lemma 4.2. Let f ∈ C∞
(
[0,∞)

)
be a strictly increasing function that vanishes to infinite order

at 0 and let Λf satisfy the condition stated in Lemma 4.1. Let F and ΩF be determined by f
as described in Section 1. Write a := min{f−1(1), 1} and write ∆ := D(0, a) × D. There exist
constants C∗, r0 > 0 such that, for any n ∈ {0, 1}, α, t > 0, β > 1 and z ∈ C, if we write

ψ(ζ, w;α, β, n, t, z) :=
|z|α tβ ζn

(w + it)2
∀(ζ, w) ∈ ΩF ∩∆,

then

‖ψ(· ;α, β, n, t, z)‖2L2(ΩF∩∆) ≤ C∗t2(β−1)
(
f−1(t)

)2(α+n+1)

∀(z, t) : (z, it) ∈ ΩF ∩∆ and t < r0. (4.3)

Proof. Let us write w = u+ iv and abbreviate ψ(· ;α, β, n, t, z) as ψ. We leave it to the reader
to verify that we can apply Fubini’s theorem wherever necessary in the following computation:

‖ψ‖2L2(ΩF∩∆) =

∫
|ζ|≤a

∫ √1−F 2(ζ)

−
√

1−F 2(ζ)

∫ √1−u2

F (ζ)

|z|2α t2β |ζ|2n

|u+ i(v + t)|4
dv du dA(ζ)
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≤ |z|2α t2β
∫
|ζ|≤a

∞∫
F (ζ)

1∫
−1

(v + t)−4

(
1 +

( u

v + t

)2
)−2

|ζ|2n du dv dA(ζ)

≤ |z|2α t2β
(∫

R

ds

(1 + s2)2

) ∫
|ζ|≤a

∞∫
F (ζ)

(v + t)−3|ζ|2n dv dA(ζ)

= C|z|2α t2β
∫ a

0

r2n+1

(t+ f(r))2
dr , (4.4)

where C > 0 is a universal constant.

In the remainder of this argument, B > 0 will denote a constant whose value is independent
of the variables involved, whose actual value is not of interest, and which may change from line
to line. For any y > 0, set Ry := f−1(y). Write Gf = Λ−1

f . By definition, we get

R√t = Gf

(
2

log(1/t)

)
, 0 < t < 1. (4.5)

We now break up the interval of integration of the integral in (4.4). For simplicity of notation,
we shall initially consider all t such that 0 < t < f(a)2, to get:∫ a

0

r2n+1

(t+ f(r))2
dr =

(∫ Rt

0
+

∫ R√t

Rt

+

∫ a

R√t

r2n+1

(t+ f(r))2
dr

)

≤
∫ Rt

0

r2n+1

t2
dr +

(∫ R√t

Rt

+

∫ a

R√t

r2n+1

4tf(r)
dr

)

≤ B
(
t−2R2n+2

t +
1

tf(R√t)
a2n+2

)
+

∫ R√t

Rt

r2n+1

4tf(r)
dr

≤ B
(
t−2R2n+2

t + t−3/2
)

+

∫ R√t

Rt

r2n+1

4tf(r)
dr

≤ B
(
t−2R2n+2

t + t−3/2
)

+
t−2

4

[
Gf

(
2

log(1/t)

)2n+2

−Gf
(

1

log(1/t)

)2n+2
]
. (4.6)

In the above calculation, the third inequality follows from the fact that, by definition, a ≤ 1,
while the estimate for the middle integral draws upon (4.5).

We shall now apply Lemma 4.1 to the expression in brackets in (4.6). Let T > 0 and C ′ > 0 be

as given by that lemma. At this stage, let us fix t to be in (0,min{f(a)2, e−1/T }). By Lemma 4.1
and (4.6): ∫ a

0

r2n+1

(t+ f(r))2
dr ≤ B(t−2R2n+2

t + t−3/2) +
C ′

4
t−2Gf

(
1

log(1/t)

)2n+2

≤ B
(
t−2R2n+2

t + t−3/2
)
. (4.7)

By the hypothesis that f vanishes to infinite order at 0, it follows that for any p, q > 0,(
f−1(t)

)p
tq

−→∞ as t→ 0+. (4.8)

Thus, there is a constant c > 0 such that

R2n+2
t ≥ t1/2 ∀t ∈ (0, c).
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Set r0 := min{f(a)2, e−1/T , c}. Then, from the above inequality, (4.7) and (4.4), we get

‖ψ‖2L2(ΩF∩∆) ≤ C ·B|z|2α t2β−2
(
f−1(t)

)2n+2 ∀t ∈ (0, r0) and n = 0, 1.

Recall that if (z, it) ∈ ΩF , then t > F (z) = f(|z|). From this and the previous inequality (we
set C∗ := C ·B), the lemma follows. �

A part of the proof of Theorem 1.3 requires estimates for the norms of certain functions in
A2(ΩF ∩∆) that are not addressed by Lemma 4.2. Thus we need:

Lemma 4.3. Let f ∈ C∞
(
[0,∞)

)
, a > 0, and ΩF , ∆ ⊂ C2 be exactly as in Lemma 4.2. There

exist constants C∗, r0 > 0 such that, for any n ∈ {0, 1} and t > 0, if we write

φ(ζ, w;n, t) :=
t3wn

(w + it)3
∀(ζ, w) ∈ ΩF ∩∆,

then

‖φ(· ;n, t)‖2L2(ΩF∩∆) ≤ C∗t2+2n
(
f−1(t)

)2 ∀t ∈ (0, r0). (4.9)

Proof. As in the proof of Lemma 4.2, we write w = u+ iv and, for n ∈ {0, 1}, compute:

‖φ(· ;n, t)‖2L2(ΩF∩∆) =

∫
|ζ|≤a

∫ √1−F 2(ζ)

−
√

1−F 2(ζ)

∫ √1−u2

F (ζ)

t6(u2 + v2)n

|u+ i(v + t)|6
dv du dA(ζ)

≤ t6
∫
|ζ|≤a

∞∫
F (ζ)

1∫
−1

u2n

|u+ i(v + t)|6
+

v2n

|u+ i(v + t)|6
du dv dA(ζ)

≡ t6(I1 + I2). (4.10)

Next, we estimate:

I1 =

∫
|ζ|≤a

∞∫
F (ζ)

1∫
−1

(v + t)2n−6

(
u/(v + t)

)2n(
1 +

(
u/(v + t)

)2)3 du dv dA(ζ)

≤

(∫ 1

−1

s2n

(1 + s2)3
ds

)∫
|ζ|≤a

∫ ∞
F (ζ)

(v + t)2n−5 dv dA(ζ)

= C

∫ a

0

r

(t+ f(r))4−2n
dr , (4.11)

and, analogously:

I2 =

∫
|ζ|≤a

∞∫
F (ζ)

1∫
−1

(v + t)2n−6

(
v/(v + t)

)2n(
1 +

(
u/(v + t)

)2)3 du dv dA(ζ)

≤

(∫ 1

−1

ds

(1 + s2)3

)∫
|ζ|≤a

∫ ∞
F (ζ)

(v + t)2n−5 dv dA(ζ)

= C

∫ a

0

r

(t+ f(r))4−2n
dr , (4.12)

where, in both estimates above, C > 0 is a constant independent of t and n.

For any y > 0, define Ry := f−1(y). In what follows, B > 0 will denote a constant whose
value is independent of the variables involved, and which may change from line to line. Since
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the intermediate inequalities leading to (4.13) are completely analogous to those in the proof of
Lemma 4.2, we shall be brief. From (4.11) and (4.12):

I1 + I2 ≤ B

(∫ Rt

0
+

∫ R√t

Rt

+

∫ a

R√t

r

(t+ f(r))4−2n
dr

)

≤ B

∫ Rt

0

r

t4−2n
dr +B

(∫ R√t

Rt

+

∫ a

R√t

r

4
(
tf(r)

)2−n dr
)

≤ B
(
t2n−4R2

t + t3(n−2)/2
)
, (4.13)

provided t ∈ (0,min{f(a)2, e−1/T }), where T > 0 is as given by Lemma 4.1. The justification
of the last inequality is, essentially, the argument leading to the estimate (4.6) above.

Since f vanishes to infinite order at 0, we can argue exactly as in the previous proof to
obtain a constant c > 0 so that R2

t ≥ t1−(n/2) whenever t ∈ (0, c) (recall: n ∈ {0, 1}). Set

r0 := min{f(a)2, e−1/T , c}. Then, from the last inequality, (4.10) and (4.13), the estimate (4.9)
follows. �

5. The proof of Theorem 1.2

The proof of one half of part (a) is, essentially, the proof of [2, Lemma 3.1]. We reproduce it
with the aim of providing, for clarity, a few details that were tacit in [2]. Suppose there exist
r1 < r2, r1, r2 ∈ [0,∞), such that f(r1) ≥ f(r2). As f is continuous, f |[0,r2] attains its maximum
in [0, r2] but, owing to our assumption, there exists a point r∗ ∈ [0, r2) such that

f(r∗) = maxr∈[0,r2] f(r).

Then, as F is a radial function,

F (r∗) ≥ F (z) ∀z ∈ D(0, r2).

Since F is subharmonic, the Maximum Principle implies that F |D(0,r2) ≡ 0. But this means that
the portion ∂ΩF in D(0, r2)×D(0, r2) is Levi-flat, which is a contradiction. Hence f is strictly
increasing. In particular, F is non-constant. Thus, by Liouville’s theorem for subharmonic
functions, F is unbounded. As f is strictly increasing, it follows that limr→∞ f(r) = +∞.

Fix α > 0 and N ∈ Z+. We shall first find a constant r(α,N) > 0 such that the upper bound
in (1.3) holds on Aα,N ∩ {(z, w) : Imw < r(α,N)}. By part (a), f−1 is well-defined. Then, with
Gf as in Lemma 4.1, we have the expression

f−1(t) = Gf

(
1

log(1/t)

)
, 0 < t < 1 (5.1)

(which we have tacitly used in the proof of Lemma 4.2). When 0 < ρ ≤ 1/2,

f−1(t/2) = Gf

(
1

log 2 + log(1/t)

)
≥ Gf

(
1

2 log(1/t)

)
∀t ∈ (0, ρ).

Let C ′ and T be as given by Lemma 4.1. By this lemma — shrinking ρ > 0 if necessary so that
1/ log(1/t) ∈ (0, T ) whenever t ∈ (0, ρ) — we get

f−1(t)− f−1(t/2) ≤ Gf (1/ log(t−1))−Gf (1/2 log(t−1))

≤ C ′Gf (1/2 log(t−1)) ≤ C ′ f−1(t/2) ∀t ∈ [0, ρ). (5.2)

Write c := (C ′ + 1)−1. Since f(x) vanishes to infinite order at x = 0, there exists a constant
r(α,N) > 0 such that r(α,N) ≤ ρ and

αt1/N <
c

2
f−1(t) ∀t ∈ (0, r(α,N)). (5.3)



12 GAUTAM BHARALI

From (5.2) and (5.3), we see that

|z|+ c

2
f−1(t) < f−1(t/2) ∀z : 0 ≤ |z| < αt1/N , 0 < t < r(α,N),

whence the bidisc

4(z, t) := D
(
z,
c

2
f−1(t)

)
×D(it, t/2) ⊂ ΩF ∀(z, it) ∈ Aα,N ∩ {Imw < r(α,N)}.

Observe that the translations Ts : (z, w) 7−→ (z, s+ w), s ∈ R, are all automorphisms of ΩF .
Thus, by the transformation rule for the Bergman kernel, and by monotonicity, we get

KF (z, s+ it) = KF (z, it)

≤ K4(z,t)(z, it) =
1

vol
(
4(z, t)

) ∀(z, s+ it) ∈ Aα,N ∩ {Imw < r(α,N)}. (5.4)

The last equality follows from the fact that 4(z, t) is a Reinhardt domain centered at (z, it).
Hence, we have found a C1 > 0, which is independent of the choice of α and N , such that

KF (z, w) ≤ C1(Imw)−2
(
f−1(Imw)

)−2 ∀(z, w) ∈ Aα,N ∩ {Imw < r(α,N)} (5.5)

(here C1 = 16/c2π2), which establishes one portion of part (b).

We shall now deduce the desired lower bound. Set a := min{f−1(1), 1}. In the remainder of
this proof, ∆ will denote the bidisc D(0, a) × D. Once again, we draw upon the fact that the
translations Ts : (z, w) 7−→ (z, s+ w), s ∈ R, are automorphisms of ΩF , whence:

KF (z, s+ it) = KF (z, it) ∀(z, s+ it) ∈ ΩF (5.6)

≥ δKΩF∩∆(z, it) ∀(z, it) ∈ ΩF ∩
(

1
2∆
)
. (5.7)

The second inequality is a consequence of Result 3.1 applied to ΩF , taking U = ∆ and V = 1
2∆.

Part (a) of the present theorem enables the use of Result 3.1.

Now, consider the functions

φt(ζ, w) := −4t2/(w + it)2 ∀(ζ, w) ∈ ΩF ∩∆,

where t > 0. In the notation of Lemma 4.2, φt = −4ψ(· ; 0, 2, 0, t, 1). Let r0 > 0 be as given by
Lemma 4.2. By construction, φt(ζ, it) = 1 ∀t > 0. Thus, by the Bergman–Fuchs identity (3.3)
and the estimate (4.3) applied to φt ( = −4ψ(· ; 0, 2, 0, t, 1), as explained), we have

KΩF∩∆(z, it) ≥ (C∗)−1t−2
(
f−1(t)

)−2 ∀(z, it) ∈ ΩF ∩∆ and t < r0. (5.8)

Lowering the value of r0, if necessary, we may assume that ΩF∩{(z, w) : Imw < r0} ⊆ ΩF∩
(

1
2∆
)
.

Then, from (5.6), (5.7) and (5.8), we get

KF (z, w) ≥ δ(C∗)−1(Imw)−2
(
f−1(Imw)

)−2 ∀(z, w) ∈ ΩF ∩ {(z, w) : Imw < r0}. (5.9)

This establishes part (c) of our theorem. We may assume that each r(α,N) ≤ r0 without
affecting the inequality (1.3). Now, consider the constant C1 introduced in (5.5): raising the
value of C1, if necessary, we obtain a C1 > 0 such that part (b) of our theorem follows from the
last observation, (5.5) and (5.9). 2

6. The proof of Theorem 1.3

Part (a) of Theorem 1.2 is relevant to this proof as well. It establishes that f is invertible. Also
relevant is the argument in the second paragraph of the proof of Theorem 1.2. The conclusion
of this argument is summarised by the following:

Fact. There exists a constant c > 0 and, for each α > 0 and N ∈ Z+, there exists a constant
r(α,N) > 0 such that whenever (z, it) ∈ Aα,N ∩ {(z, w) : Imw < r(α,N)}, the bidisc

4(z, t) := D
(
z,
c

2
f−1(t)

)
×D(it, t/2) ⊂ ΩF . (6.1)
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By an argument analogous to the one in the proof of Theorem 1.2 — involving the fact that
Ts : (z, w) 7−→ (z, s+ w) is an automorphism of ΩF for any s ∈ R— we have

ds2
F (z, s+ it; ξ) = ds2

F (z, it; ξ) ∀(z, s+ it; ξ) ∈ ΩF × C2. (6.2)

By (6.1), and by the monotonicity property of the functional JΩ given by (3.4), we have:

J4(z,t)(z, it; ξ) ≤ JΩF (z, it; ξ) ∀(z, it; ξ) ∈
(
Aα,N ∩ {(z, w) : Imw < r(α,N)}

)
× (C2\{0}).

We know that K4(z,t)(z, it) = 16(πc)−2
(
f−1(t)

)−2
t−2; see (5.4). It is a standard result (or one

may compute from the last formula) that

ds2
4(z,it)(z, it; ξ) = 8

(
c−2
(
f−1(t)

)−2|ξ1|2 + t−2|ξ2|2
)
∀ξ ∈ C2.

From these formulas and (3.5), we get an exact expression for J4(z,t)(z, it; ξ). We combine this

with monotonicity of JΩ: then, (6.2), the Bergman–Fuchs formula for ds2
F , and the lower bound

in (1.3) imply that there exists a constant C2 > 0 (independent of α and N) such that:

ds2
F (z, s+ it; ξ) ≤ 1/

(
J4(z,t)(z, it; ξ)KF (z, it)

)
= 16(πc)−2

(
f−1(t)

)−2
t−2
(
8c−2

(
f−1(t)

)−2|ξ1|2 + 8t−2|ξ2|2
)
KF (z, it)−1

≤ C2

((
f−1(t)

)−2|ξ1|2 + |t|−2|ξ2|2
)

∀(z, s+ it; ξ) ∈
(
Aα,N ∩ {(z, w) : Imw < r(α,N)}

)
× (C2\{0}).

Hence, we have found a C2 > 0, which is independent of the choice of α and N , such that

ds2
F (z, w; ξ) ≤ C2

((
f−1(Imw)

)−2|ξ1|2 + |Imw|−2|ξ2|2
)

∀(z, w; ξ) ∈
(
Aα,N ∩ {(z, w) : Imw < r(α,N)}

)
× C2, (6.3)

which establishes one half of the estimate (1.4).

We shall now deduce the desired lower bound. As in the proof of Theorem 1.2, we set
a := min{f−1(1), 1} and ∆ := D(0, a)× D. Also, for reasons analogous to those in the proof of
Theorem 1.2 (or in the previous paragraph), we have:

ds2
F (z, s+ it; ξ) = ds2

F (z, it; ξ) ∀(z, s+ it; ξ) ∈ ΩF × C2 (6.4)

≥ δds2
ΩF∩∆(z, it; ξ) ∀(z, it; ξ) ∈

(
ΩF ∩

(
1
2∆
))
× C2. (6.5)

The second inequality follows from Result 3.1 applied to ΩF , taking U = ∆ and V = 1
2∆ — the

applicability of this result being, as before, due to Theorem 1.2-(a).

Now, fix a point (z, it) ∈ ΩF ∩ ∆, and let ξ ∈ C2 \ {(0, 0)}. In view of (6.5), we need to
find a lower bound for ds2

ΩF∩∆(z, it; ξ). This quest for a lower bound splits into two cases. In
the argument below, B > 0 will denote a constant whose value is independent of the variables
involved, whose actual value is not of interest, and which may change from line to line.

Case 1. ξ ∈ C2 \ {(0, 0)} such that ξ2 6= 0.

Consider the function

φt, ξ(ζ, w) := −8it3(w − it)
ξ2(w + it)3

∀(ζ, w) ∈ ΩF ∩∆.

It is easy to check that φt, ξ belongs to the set occurring on the right-hand side of the equation
that defines JΩF∩∆(z, it; ξ). In terms of the notation of Lemma 4.3,

|φt, ξ|2 ≤
128

|ξ2|2
|φ(· ; 1, t)|2 +

128t2

|ξ2|2
|φ(· ; 0, t)|2. (6.6)
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Let r0 > 0 be the constant given by Lemma 4.3. Let us now consider (z, it) ∈ ΩF ∩∆ such that
0 < t < r0. Then, in view of (6.6), Lemma 4.2 gives us

‖φt, ξ‖2L2(ΩF∩∆) ≤
B

|ξ2|2
t4(f−1(t)

)2
.

for some constant B > 0. Therefore, by the definition of JΩF∩∆(z, it; ξ) in (3.4), clearly

JΩF∩∆(z, it; ξ) ≤ B

|ξ2|2
t4
(
f−1(t)

)2
∀(z, it) ∈ ΩF ∩∆ ∩ {(z, w) : Imw < r0} and ξ : ξ2 6= 0. (6.7)

Let us define

τ(α,N) := min{r0, r(α,N)} (6.8)

where r(α,N) is as given by the Fact stated at the beginning of this proof. Now, the latter
parameter is precisely the one provided by the proof of Theorem 1.2 and which is introduced
just before the estimate (1.3). Therefore, we have, by (1.3):

1

KF (z, it)
≥ (1/C1)t2

(
f−1(t)

)2 ∀(z, it) ∈ Aα,N ∩ {(z, w) : Imw < r(α,N)}.

From the latter inequality, (6.7), the Bergman–Fuchs identity (3.5), and (5.7), we get

ds2
ΩF∩∆(z, it; ξ) ≥ δ|ξ2|2

B · C1
t−2

∀(z, it) ∈ Aα,N ∩
(

1
2∆
)
∩ {(z, w) : Imw < τ(α,N)} and ξ : ξ2 6= 0. (6.9)

Case 2. ξ ∈ C2 \ {(0, 0)} such that ξ1 6= 0.

Consider the function

ϕz, t, ξ(ζ, w) := − 4(ζ − z)t2

ξ1(w + it)2
∀(ζ, w) ∈ ΩF ∩∆.

It is easy to verify that ϕz, t, ξ belongs to the set occurring on the right-hand side of the equation
that defines JΩF∩∆(z, it; ξ). In this case, in terms of the notation of Lemma 4.2,

|ϕz, t, ξ|2 ≤
32

|ξ1|2
|ψ(· ; 0, 2, 1, t, 1)|2 +

32

|ξ1|2
|ψ(· ; 1, 2, 0, t, z)|2. (6.10)

As before, let us first restrict (z, it) to ΩF ∩ ∆ such that 0 < t < r0, where r0 is as given by
Lemma 4.2. Given (6.10), this lemma implies:

‖ϕz, t, ξ‖2L2(ΩF∩∆) ≤
B

|ξ1|2
t2
(
f−1(t)

)4
,

for some constant B > 0. Therefore, by the definition of JΩF∩∆(z, it; ξ) in (3.4),

JΩF∩∆(z, it; ξ) ≤ B

|ξ1|2
t2
(
f−1(t)

)4
∀(z, it) ∈ ΩF ∩∆ ∩ {(z, w) : Imw < r0} and ξ : ξ1 6= 0. (6.11)

Defining τ(α,N) exactly as in (6.8) and arguing exactly as in Case 1, we get

ds2
ΩF∩∆(z, it; ξ) ≥ δ|ξ1|2

B · C1

(
f−1(t)

)−2

∀(z, it) ∈ Aα,N ∩
(

1
2∆
)
∩ {(z, w) : Imw < τ(α,N)} and ξ : ξ1 6= 0. (6.12)



GROWTH OF THE BERGMAN METRIC 15

To complete the proof, we first note that for each relevant (z, it), (6.9) and (6.12) give two

different lower bounds for ds2
ΩF∩∆(z, it; ·) on the set {ξ ∈ T 1,0

(z,it)(ΩF∩(1
2∆)) : ξ1 6= 0 and ξ2 6= 0}.

From this, it follows that

ds2
ΩF∩∆(z, it; ξ) ≥ δ

2B · C1

((
f−1(t)

)−2|ξ1|2 + t−2|ξ2|2
)

∀(z, it; ξ) ∈
(
Aα,N ∩

(
1
2∆
)
∩ {(z, w) : Imw < τ(α,N)}

)
× C2. (6.13)

Lowering the value of the constant r0 that occurs in (6.8), if necessary, we may assume that

ΩF ∩ {(z, w) : Imw < r0} ⊆ ΩF ∩
(

1
2∆
)
.

Then, from (6.4), (6.5) and (6.13), we get

ds2
F (z, w; ξ) ≥ δ2

2B · C1

((
f−1(Imw)

)−2|ξ1|2 + |Imw|−2|ξ2|2
)

∀(z, w; ξ) ∈
(
Aα,N ∩ {(z, w) : Imw < τ(α,N)}

)
× C2. (6.14)

This establishes the other half of the estimate (1.4). Raising the value of the constant C2 > 0
introduced just prior to (6.3), if necessary, (1.4) now follows from (6.3) and (6.14). 2
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