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1. Introduction and Statement of Results

A compact subset K ⊂ Cn is said to be polynomially convex if for every point ζ /∈ K, there
exists a holomorphic polynomial P such that P (ζ) = 1 and supK |P | < 1. K is said to be locally
polynomially convex at a point p ∈ K if there exists a closed ball B(p) centered at p such that
K ∩ B(p) is polynomially convex. In general, it is difficult to determine whether a given compact
K ⊂ Cn is polynomially convex when n > 1. In contrast, there is a considerable body of work
concerning the (local) polynomial convexity of smooth surfaces in Cn. Let S be a smooth real
surface S in Cn, n > 1. A point p ∈ S is said to be totally real if the tangent plane Tp(S) at p
is not a complex line. A point on S that is not totally real will be called a CR singularity. At a
totally real point p ∈ S, the surface S is locally polynomially convex. This is not always the case
if p ∈ S is an isolated CR singularity. When, at a CR singularity p ∈ S, the order of contact of
Tp(S) with S equals 2, the situation is well understood. Suppose S ⊂ C2; then there exist local
holomorphic coordinates (z, w) with respect to which p = (0, 0), and such that S is locally given
by an equation of the form w = |z|2 + γ(z2 + z2) + F (z), where γ > 0 and F (z) = O(|z|3). In
Bishop’s terminology, the CR singularity p = (0, 0) is said to be elliptic if 0 < γ < 1/2, parabolic
if γ = 1/2 and hyperbolic is γ > 1/2. Bishop showed [1] that if p is elliptic, then given ε0 > 0
there is a one-parameter family of analytic discs whose boundaries are contained in S ∩ B(p; ε0),
whence S is not polynomially convex. Much later, Forstnerič & Stout [3] showed that if p ∈ S is
an isolated, hyperbolic CR singularity, then S is locally polynomially convex at p.

Very litte is known if the order of contact of Tp(S) with S at a CR singularity p is greater than
2. We will call such a CR singularity a degenerate CR singularity. The aim of this paper is to
study when S is locally polynomially convex at an isolated, degenerate CR singularity. Knowing
so may be useful in function theory : for instance, if a surface S had only isolated CR singularities,
and one knew that S was locally polynomially convex at each singularity, then S would have a
Stein neighbourhood basis. Local polynomial convexity at a degenerate CR singularity may be
inferred in some cases when S is the graph of a function F ∗ and F ∗ : C → C is a globally-
defined, finitely-sheeted branched covering; refer to [7] for a precise statement. It would, however,
be useful to deduce local polynomial convexity using merely local information. To this end, we
provide certain sufficient conditions for a smooth surface S to be locally polynomially convex at an
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isolated, degenerate CR singularity. Given a compact subset K ⊂ Cn, let P(K) denote the function
space of uniform limits of the holomorphic polynomials on K. Questions about the polynomial
convexity of K are closely related to whether P(K) = C(K). In particular, for any compact
K ⊂ Cn, P(K) = C(K) implies that K is polynomially convex (we will justify this assertion in §3).
Here, and in what follows, C(K) will denote the class of complex-valued continuous functions on
K. Our results provide sufficient conditions showing that, given a surface S and an isolated CR
singularity p ∈ S, not only is there a small compact S-neighbourhood of p that is polynomially
convex, but that all continuous functions on this portion of S can be approximated uniformly by
holomorphic polynomials.

We now state our first result :

Theorem 1.1. Let S be a smooth surface in C2 given by

w =
∑

α+β=k

Cα,βz
αzβ + F (z),

where (z, w) are holomorphic coordinates on C2, F is a smooth function satisfying F (z) = o(|z|k)
as z → 0, and k > 2. Assume that S has an isolated CR singularity at the origin. Let us write∑

α+β=k

Cα,βz
αzβ = Ck,0z

k + C0,kz
k + Σ(z), C0,k 6= 0.

If |Σ(z)| ≤ κ|z|k for some κ satisfying

(1.1) 0 ≤ κ < |C0,k|min
{
π

2k
,
1
2

}
,

then there exists a constant ε0 > 0 such that {(z, w) : |z| ≤ ε0} ∩ S is polynomially convex.
Furthermore, P({(z, w) : |z| ≤ ε0} ∩S) = C({(z, w) : |z| ≤ ε0} ∩S).

One may ask whether there is a purely geometric condition such as hyperbolicity – as opposed
to the analytical condition above – according to which a surface S is locally polynomially convex at
a degenerate CR singularity p ∈ S. The Maslov index (the reader is referred to [2] for a definition)
is an invariant associated with an isolated CR singularity. Elliptic CR singularities have Maslov
index 1 while hyperbolic points have Maslov index −1. In view of the definition of the Maslov
index, it is reasonable to ask if a surface is locally polynomially convex at an isolated, degenerate
CR singularity with negative Maslov index. However, this is not true. An example of Wiegerinck
[9, Example 4.3] shows that a surface can have a non-trivial polynomial hull near an isolated,
degenerate CR singularity with negative Maslov index. It thus seems that additional conditions
are necessary.

Now, the analytical condition in Theorem 1.1 essentially says that if a surface S is, around a
CR singularity taken to be the origin, presented as a graph of a function F ∗ with leading order
k > 2, then S is locally polynomially convex if the Taylor coefficients of all the leading terms of F ∗

other than the zk term are in some sense small in comparison to that of the zk term. However, by
adapting the technique of Forstnerič & Stout to the case of degenerate CR singularities, one can
also demonstrate local polynomial convexity in cases where some of the leading Taylor coefficients
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of the graphing function are not small in comparison to that of the zk term. This is the situation
addressed by the following theorem :

Theorem 1.2. Let S be a smooth surface in C2 given by

w =
∑

α+β=2k

Cα,βz
αzβ + F̃ (z),

where (z, w) are holomorphic coordinates on C2, F̃ is a smooth function satisfying F̃ (z) = o(|z|2k)
as z → 0, and k > 1. Assume that S has an isolated CR singularity at the origin. Let us write∑

α+β=2k

Cα,βz
αzβ = C2k,0z

2k + Ck,k|z|2k + C0,2kz
2k + Σ̃(z),

γ =
|C0,2k|
|Ck,k|

.

If γ > 1/2 and |Σ̃(z)| ≤ κ(2γ − 1)|z|2k for some κ satisfying

(1.2) 0 ≤ κ <
|Ck,k|

2
min

{
π

2k
,

2γ − 1
2γ(3γ + 2)

}
,

then there exists a constant ε0 > 0 such that {(z, w) : |z| ≤ ε0} ∩ S is polynomially convex.
Furthermore, P({(z, w) : |z| ≤ ε0} ∩S) = C({(z, w) : |z| ≤ ε0} ∩S).

We do not claim that the condition (1.2) is the best possible condition that guarantees local
polynomial convexity. On the other hand, if Σ̃(z) = 0, then an obvious modification of the
arguments in [1] shows that S would not be polynomially convex if γ < 1/2. The case γ = 1/2
leads to varying phenomena as in the case when 0 ∈ C2 is a non-degenerate CR singularity (the
interested reader is refered to [5] on the last subject).

2. Some notation and remarks

The primary purpose of this section is to state Kallin’s lemma [6], which is instrumental in
demonstrating (local) polynomial convexity of various configurations in Cn, n > 1, and to remark
upon its connection with our results. We state a form of Kallin’s lemma that we shall use in
Sections 3 & 4; the reader is referred to [6] for the original result.

Lemma 2.1 (Kallin). Suppose X1 and X2 are compact subsets of Cn such that P(Xj) = C(Xj),
j = 1, 2. Let φ : Cn → C be a holomorphic polynomial such that φ(Xj) ⊂ Wj, j = 1, 2, where W1

and W2 are polynomially convex compact sets in C and W1 ∩W2 = {0}. Assume that φ−1{0} ∩
(X1 ∪X2) = X1 ∩X2. Then P(X1 ∪X2) = C(X1 ∪X2).

The above version of Kallin’s lemma is implicit in the proof of Theorem IV in [3]. But, for the
reader’s convenience, we provide the following :
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Sketch of the proof of Lemma 2.1. The conditions on Wj , j = 1, 2, imply that W1 and W2 are
peak sets for P(W1 ∪W2). As P(X1 ∪X2) is a closed subspace of C(X1 ∪X2), there is a regular
Borel measure µ on X1 ∪ X2 that annihilates P(X1 ∪ X2). Define µj := µ|Xj , j = 1, 2. Let
f ∈ P(W1 ∪W2) peak on W1. Then, for every holomorphic polynomial P on Cn, we have

0 = lim
ν→∞

∫
X1∪X2

(f ◦ φ)νP dµ =
∫

X1

P dµ,

whence µ1 annihilates P(X1) = C(X1), which implies that µ1 = 0. Similarly, µ2 = 0. We have
shown that µ = 0. Therefore P(X1 ∪X2) = C(X1 ∪X2). �

In our proofs, we will extend a technique presented in [3, Theorem IV]. In the proofs of both the
results, we will find an appropriate proper polynomial mapping of C2 onto C2 such that the pre-
image of an appropriately small compact S-neighbourhood of the origin under this proper mapping
is a finite union of compact subsets X1, . . . , XN which satisfy P(Xj) = C(Xj), j = 1, 2, . . . , N .
N = k in Theorem 1.1, and N = 2 in Theorem 1.2. We will then show that the sets X1, . . . , XN

are mapped by a polynomial into distinct sectors in C, which intersect only at the origin. It is at
this stage that one needs Lemma 2.1, and one infers that P(X1 ∪ · · · ∪XN ) = C(X1 ∪ · · · ∪XN ).
The desired conclusions follow from the last statement by appealing to the theory analytic covers.
These proofs are presented in the next section. The proof of Theorem 1.2 incorporates the use of
certain technical lemmas. The proofs of those lemmas have been deferred to §4.

Before presenting the proofs of our results, we define a couple of concepts that will be used in
§3. Firstly, if K is a compact subset of Cn, the polynomially convex hull of K, written K̂, is
defined by

K̂ := {ζ ∈ Cn | |P (ζ)| < sup
K

|P |, for every holomorphic polynomial P}.

Given a uniform algebra A, the maximal ideal space of A is the space of all algebra-homomorphisms
of A to C, viewed as a subspace of the dual space A∗ with the weak* topology (it is a standard
fact that every complex homomorphism of A is in fact continuous). Recall that for a compact
subset K, the maximal ideal space of C(K) is homeomorphically identified with K. We will need
this fact in §3.

3. Proof of the Main Results

The proof of Theorem 1.1. We begin by noting that we may assume, without loss of generality,
that Ck,0 = 0. This is because when this is not the case, we can simply choose new holomorphic
coordinates (z∗, w∗) given by

z∗ := z, w∗ := w − Ck,0z
k,

whereby the coefficient of the (z∗)k term of the function defining S vanishes. For this reason,
we shall assume, in the following argument, that Ck,0 = 0. Let Ψ : C2 → C2 be defined by
Ψ(z, w) := (z, wk). This is a proper map of C2 onto itself having multiplicity k. Notice that there
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exists a δ > 0 such that Ψ−1({(z, w) : |z| ≤ δ} ∩ S) = ∪k
j=1Sj(δ), where S1(δ), . . . ,Sk(δ), are

compact sets given by the equations

Sj(δ) : w = e2πi(j−1)/k c∗z {1 +H(z)}, |z| ≤ δ,

where c∗ := |C0,k|eiArg(C0,k)/k, and H is a continuous function satisfying a useful estimate. To
justify this statement, we introduce the function F ∗ and view the surface S as the graph of F ∗.
F ∗ may be written as

F ∗(z) = C0,kz
k

{
1 +

Σ(z)
C0,kz

k
+

F (z)
C0,kz

k

}
.

Observe that

a) Owing to the estimate for Σ(z) and the condition (1.1)∣∣∣∣ Σ(z)
C0,kz

k

∣∣∣∣ ≤ κ

|C0,k|
<

1
2
; and

b) limz→0 F (z)/C0,kz
k = 0.

For the above reasons, we can find a δ > 0 so small that∣∣∣∣ Σ(z)
C0,kz

k
+

F (z)
C0,kz

k

∣∣∣∣ ≤ 1
2

∀|z| ≤ δ.

Given this fact, F ∗(z) has k distinct kth-roots f∗1 (z), . . . , f∗k (z) when 0 < |z| ≤ δ, each Sj(δ) is the
graph of f∗j , j = 1, . . . , k, and

(3.1) f∗j (z) = e2πi(j−1)/k c∗z

[
1 +

∞∑
m=1

αm

{
Σ(z)
C0,kz

k

}m

+ o(1)

]
,

where the αm’s are the coefficients occuring in the Taylor expansion of (1 + x)1/k around x = 0,
i.e.

(1 + x)1/k = 1 +
∞∑

m=1

αmx
m, |x| < 1.

The infinite series in equation (3.1) represents a function h that is homogeneous of degree 0, and
we write H(z) := h(z) +R(z), where R(z) = o(1) as z → 0. Notice that
(3.2)

sup
|z|=1

|h(z)| ≤
∞∑

m=1

|αm|
{

min
(

1
2
,
π

2k

)}m

= 1−
{

1−min
(

1
2
,
π

2k

)}1/k

< min
(

1
2
,
π

2k

)
.

The last inequality above follows from the fact that k > 2 and that the term in the braces is
smaller than 1. In view of (3.1) and (3.2) and the second part of condition (1.1), it is possible to
find a small constant ε1 > 0 such that

|zH(z)− ζH(ζ)| ≤ sup
|ξ|=1

|h(ξ)| |z − ζ|+ |z| |h(z)− h(ζ)|+ |zR(z)− ζR(ζ)|(3.3)

< |z − ζ| ∀z 6= ζ : |z|, |ζ| ≤ δ, and ∀δ ∈ (0, ε1].

The estimate (3.3) allows us to use a result of Wermer [8, Theorem 1] to conclude that for each
Sj(δ), P(Sj(δ)) = C(Sj(δ)), j = 1, . . . , k, assuming, of course, that 0 < δ ≤ ε1.
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Consider the polynomial p(z, w) = zw/c∗. For any (z, w) ∈ S1(δ),

Re{p(z, w)} = |z|2 + Re{ |z|2(h(z) +R(z))} ≥ |z|2 − |z|2|h(z)| − |z|2|R(z)|,

|Im{p(z, w)}| ≤ |z|2{ |h(z)|+ |R(z)| }.

In view of the estimate (3.2) and the fact that R(z) = o(1) as z → 0, we can find a number M
satisfying 1/2 < M < 1− κ/|C0,k| and a small constant ε2 > 0 such that

Re{p(z, w)} ≥ M |z|2, |Im{p(z, w)}| < π

2k
|z|2 ∀|z| ≤ δ,

p(S1(δ))  {x+ iy ∈ C : |y| ≤ (π/2kM)x}, where δ ∈ (0, ε2].(3.4)

(3.4) says that p(S1(δ)) is a proper subset of the sector W1 that is centered on the positive x-axis,
and has an aperture of (π/kM). Note, therefore that p(Sj(δ)) is a proper subset of the sector Wj ,
which is simply a copy of W1 rotated by (2π(j − 1)/k), j = 1, . . . , k.

We have shown so far that :

• For each Sj(δ), P(Sj(δ)) = C(Sj(δ)), j = 1, . . . , k, where 0 < δ ≤ ε1;
• p(Sj(δ))  Wj , j = 1, . . . , k, where 0 < δ ≤ ε2;
• Wµ ∩Wν = {0} ∀µ 6= ν, because the aperture of each Wj , π/kM < 2π/k; and
• p−1{0} ∩ { ∪k

j=1Sj(δ) } = {(0, 0)}, where 0 < δ ≤ ε2.

We define ε0 := min(ε1, ε2); the above facts allow us to apply Lemma 2.1 repeatedly to show that

(3.5) P(∪k
j=1Sj(ε0)) = C(∪k

j=1Sj(ε0)).

Now let f ∈ C({(z, w) : |z| ≤ ε0} ∩S). Define f̂ := f ◦ Ψ : Ψ−1({(z, w) : |z| ≤ ε0} ∩S) → C. As
Ψ−1({(z, w) : |z| ≤ ε0} ∩ S) = ∪k

j=1Sj(ε0), f̂ ∈ C(∪k
j=1Sj(ε0)). We can paraphrase (3.5) in the

following way : for each ε > 0, there exists a polynomial gε such that

(3.6) |f̂(z, e2πi(j−1)/kw)− gε(z, e2πi(j−1)/kw)| < ε ∀(z, w) ∈ S1(ε0), j = 1, . . . , k.

We define

Qε(z, w) :=
1
k

k∑
j=1

gε(z, e2πi(j−1)/kw).

Notice that if gε(z, w) =
∑

0≤µ+ν≤N Aµ,νz
µwν , then Qε(z, w) has the form

Qε(z, w) =
∑

(µ,ν):ν=kj

Aµ,kjz
µwkj

≡ Pε(z, wk),

where Pε is itself a polynomial. Let us write w = |w|eiθ, θ ∈ [0, 2π). For (z, w) ∈ {(z, w) : |z| ≤
ε0} ∩S, we compute

|f(z, w)− Pε(z, w)| =

∣∣∣∣∣∣1k
k∑

j=1

f̂(z, |w|1/kei(2π(j−1)+θ)/k)−Qε(z, |w|1/keiθ/k)

∣∣∣∣∣∣
≤

k∑
j=1

|f̂(z, |w|1/kei(2π(j−1)+θ)/k)− gε(z, |w|1/kei(2π(j−1)+θ)/k)|
k

< k
( ε
k

)
.
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The last inequality follows from the estimate (3.6). This establishes that P({(z, w) : |z| ≤ ε0}∩S) =
C({(z, w) : |z| ≤ ε0} ∩S).

We now only need to show that {(z, w) : |z| ≤ ε0} ∩ S is polynomially convex. This follows
from general abstract considerations. For this purpose, given a compact K b Cn, we define

K̂ := the polynomially convex hull of K,

A(K;Cn) := the uniform algebra generated by the class {f |K : f ∈ O(Cn)},

M[A(K;Cn)] := the maximal ideal space of the uniform algebra A(K;Cn).

We know that M[A(K;Cn)] = K̂; see, for instance, [4, Corollary VII.A(6)]. Thus, in our situation,
M[A({(z, w) : |z| ≤ ε0} ∩S;C2)] = {(z, w) : |z| ≤ ε0}̂∩S. But since P({(z, w) : |z| ≤ ε0} ∩S) =
C({(z, w) : |z| ≤ ε0} ∩S),

{(z, w) : |z| ≤ ε0}̂∩S = M[C({(z, w) : |z| ≤ ε0} ∩S)] = {(z, w) : |z| ≤ ε0} ∩S.

This concludes our proof. �

Before proving Theorem 1.2 we remark that with respect to a new system of holomorphic
coordinates (z∗, w∗) defined by

z∗ := e−iφ0z

w∗ :=
w − (C2k,0 − C0,2k)z2k

Ck,k
,

where φ0 :=
Arg(C0,2k/Ck,k)

2k
,

S is expressed by the equation

S : w∗ = |z∗|2k + γ((z∗)2k + (z∗)2k) +
Σ̃(eiφ0z∗)
Ck,k

+
F̃ (eiφ0z∗)
Ck,k

.

For simplicity of notation, we will denote the new coordinates by (z, w), and assert that the surface
S is expressed by an equation of the form

(3.7) S : w = |z|2k + γ(z2k + z2k) + Σ(z) + F (z)

with respect to these new coordinates. In the above expression, Σ(z) is homogeneous of degree 2k,
F (z) = o(|z|2k) as z → 0, and γ is precisely as defined in Theorem 1.2. Let us define a function
ψ(z, w) := |z|2k + γ(z2k + z2k) + Σ(z) +F (z)−w. With respect to the new coordinates, S is thus
the zero set of ψ. Under this change of coordinate |Σ(z)| ≤ κ(2γ − 1)|z|2k, and the estimate (1.2)
transforms to

(3.8) 0 ≤ κ <
1
2

min
{
π

2k
,

2γ − 1
2γ(3γ + 2)

}
.

In the remainder of this paper, we will assume that S is the zero set of ψ or, equivalently, is defined
by (3.7)
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The proof of Theorem 1.2 : Let Φ : C2 → C2 be defined by Φ(z, w) = (z, zkw + γ(z2k + w2).
This is a proper mapping of C2 onto itself having multiplicity 2. We first show that there is a
small constant δ > 0 such that Φ−1({(z, w) : |z| ≤ δ} ∩S) = S1(δ) ∪ S2(δ), where Sj(δ), j = 1, 2,
are compact sets given by the the following equations

S1(δ) : w = zk +H(z) + f1(z), |z| ≤ δ,(3.9)

S2(δ) : w = −
(

1
γ
zk + zk

)
−H(z) + f2(z), |z| ≤ δ,

where

• f1 and f2 are continuous functions satisfying fj(z) = o(|z|k) as z → 0, j = 1, 2; and
• H(z) is a continuous function that is homogeneous of degree k and satisfies |H(z)| ≤ 2κ|z|k.

In order to justify the above statement, we need to analyze how the equations describing S1(δ)
and S2(δ) arise. We first study the set S1(δ). For this purpose, we introduce the quantity g1(z)
such that

S1(δ) = {(z, w) : w = zk + g1(z), |z| small},

and demand that ψ[Φ(z, zk + g1(z))] = 0. Thus g1 satisfies the quadratic equation

γg2
1 + (2γzk + zk)g1 − {Σ(z) + F (z)} = 0.

By the quadratic formula

g1(z) = −2γzk + zk

2γ
+

√
(2γzk + zk)2 + 4γ{Σ(z) + F (z)}

2γ
(3.10)

= −2γzk + zk

2γ
+

2γzk + zk

2γ

{
1 +

4γ{Σ(z) + F (z)}
(2γzk + zk)2

}1/2

in a small neighbourhood of z = 0, where the square root is unambiguously defined. We choose
the positive square root in the equation (3.10) because it is this branch of the square root which
ensures that f1(z) decays in the desired manner as z → 0. To see this, observe that if we write
z = |z|eiθ, then 2γz2k + |z|2k = |z|2k{(2γ cos(2kθ) + 1)− 2iγ sin(2kθ)}. Therefore,

(3.11) |2γz2k + |z|2k| = |z|2k
√

1 + 4γ2 + 4γ cos(2kθ) ≥ |z|2k
√

1 + 4γ(γ − 1) = (2γ − 1)|z|2k.

Since γ > 1/2, the quantity on the extreme right of the above estimate is strictly positive when
z 6= 0. Thus :

(3.12)
∣∣∣∣ 4γΣ(z)
(2γzk + zk)2

∣∣∣∣ =
∣∣∣∣ 4γΣ(z)z2k

(2γz2k + |z|2k)2

∣∣∣∣ ≤ 4κγ(2γ − 1)|z|2k

(2γ − 1)2|z|2k
≤ 2

7
.

The last inequality is a consequence of the estimate (3.8) for κ. As |F (z)| = o(|z|2k) as z → 0,
there is a δ > 0 which is so small that |4γ{Σ(z) +F (z)}/(2γzk + zk)2| < 1 ∀|z| ≤ δ. Therefore, we
can write :

(3.13) g1(z) =
2γzk + zk

2γ

∞∑
m=1

βm

{
4γΣ(z)

(2γzk + zk)2

}m

+
F (z)

2γzk + zk
+O(|z|k+1) ∀|z| ≤ δ,
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where the coefficients βm are the coefficients occuring in the Taylor expansion of (1+x)1/2 around
x = 0. The smallness of the quantity on the extreme left of (3.12) allows us to make the following
estimate

(3.14)
∞∑

m=1

|βm|
∣∣∣∣ 4γΣ(z)
(2γzk + zk)2

∣∣∣∣m = 1−
{

1−
∣∣∣∣ 4γΣ(z)
(2γzk + zk)2

∣∣∣∣ }1/2

<

∣∣∣∣ 4γΣ(z)
(2γzk + zk)2

∣∣∣∣ .
From the inequalities (3.13), (3.12) and (3.14), we can write

g1(z) ≡ H(z) +
F (z)

2γzk + zk
+O(|z|k+1)

≡ H(z) + f1(z) ∀|z| ≤ δ,

provided δ > 0 is sufficiently small, and where

H(z) :=
2γzk + zk

2γ

∞∑
m=1

βm

{
4γΣ(z)

(2γzk + zk)2

}m

,

|H(z)| ≤ 2
∣∣∣∣ Σ(z)
(2γzk + zk)

∣∣∣∣ ≤ 2κ|z|k.

By this last estimate, we see that H(z) and f1(z) satisfy the desired properties. This completes
the analysis of the compact S1(δ).

Next, we study the set S2(δ). Let g2(z) such that

S2(δ) =
{

(z, w) : w = −
(
zk

γ
+ zk

)
+ g2(z), |z| small

}
.

Once more, we demand that ψ[Φ(z, zk + g2(z))] = 0. Thus g2 satisfies the quadratic equation

γg2
2 − (2γzk + zk)g2 − {Σ(z) + F (z)} = 0.

By the quadratic formula

g2(z) =
2γzk + zk

2γ
−

√
(2γzk + zk)2 + 4γ{Σ(z) + F (z)}

2γ
(3.15)

=
2γzk + zk

2γ
− 2γzk + zk

2γ

{
1 +

4γ{Σ(z) + F (z)}
(2γzk + zk)2

}1/2

for each |z| ≤ δ, with δ > 0 appropriately small. Unlike in equation (3.10), we choose a different
branch of the square root in (3.15). We make this choice because it ensures that f2(z) decays in
the desired manner as z → 0. This is shown in exactly the same manner as in the case of S1(δ).
In this case, it turns out that

g2(z) = −2γzk + zk

2γ

∞∑
m=1

βm

{
4γΣ(z)

(2γzk + zk)2

}m

− F (z)
2γzk + zk

+O(|z|k+1)(3.16)

≡ −H(z) + f2(z) ∀|z| ≤ δ,

and exactly the same δ > 0 as the δ produced in the analysis on S1(δ) works. Exactly as in the
preceding paragraph, from the expressions (3.13), (3.12) and (3.16), the desired conclusion about
the structure of S2 is established.
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Finally, owing to the estimate |H(z)| ≤ 2κ|z|k, whereby

2|H(z)| <
(

2− 1
γ

)
|z|k,

and the fact that γ > 1/2, we have

zk +H(z) 6= −
(

1
γ
zk + zk

)
−H(z) ∀z 6= 0.

Since f1(z), f2(z) = o(|z|k) as z → 0, the above inequality implies – lowering the value of δ > 0 if
necessary – that S1(δ) ∩ S2(δ) = {0}. From this we conclude, since Φ is a mapping of multiplicity
2 and Φ[Sj(δ)] ⊂ S, j = 1, 2, that Φ−1({(z, w) : |z| ≤ δ} ∩S) = S1(δ) ∪ S2(δ).

We shall need the following lemma, whose proof is deferred to §4 :

Lemma 4.1. Let S be a surface in C2 that, in a neighbourhood of the origin, is defined by the
equation

w = zk + σ(z) +G(z),

where

• γ > 1/2,
• σ is a continuous function that is homogeneous of degree k such that |σ(z)| ≤ 2κ|z|k for

some κ satisfying the condition (3.8), and
• G is a continuous function satisfying G(z) = o(|z|k) as z → 0.

There exists a small constant ε0 > 0 such that P({(z, w) : |z| ≤ ε0}∩S) = C({(z, w) : |z| ≤ ε0}∩S).

By a direct application of Lemma 4.1, we see that there exists an ε1 > 0 such that P(S1(ε)) =
C(S1(ε)) ∀ε ≤ ε1. The image of S2(δ) under the biholomorphic map (z, w) 7→ (z,−w− zk/γ) is of
the same form as S in Lemma 4.1. Thus, P(S2(ε)) = C(S2(ε)) ∀ε ≤ ε1.

Let φε(γ) denote the polynomial

(3.17) φε(γ)(z, w) =
z2k − w2

4
+ ε(γ)zkw,

where

ε(γ) :=


3/16, if γ ≥ 1,

min
{

3
16
,

2γ − 1
8γ(1− γ)

}
, if 1/2 < γ < 1.

We now refer the reader to Lemmas 4.2 and 4.3 in the next section. These lemmas tell us that
there exists a small constant ε2 > 0 such that for every δ < ε2, φε(γ) maps S1(δ) into a closed
sector that is symmetric with respect to the x-axis and is strictly contained in {z ∈ C : Re(z) ≥ 0},
while φε(γ)(S2(δ)) \ {0} is contained in {z ∈ C : Re(z) < 0}.

Let ε0 = min(ε1, ε2). At this stage in the proof, we have all the elements needed to invoke
Kallin’s Lemma, (i.e. Lemma 2.1) to conclude that P(S1(ε0) ∪ S2(ε0)) = C(S1(ε0) ∪ S2(ε0)). We
want to deduce from this that P({(z, w) : |z| ≤ ε0} ∩ S) = C({(z, w) : |z| ≤ ε0} ∩ S). This
is achieved by the following argument by Forstneric & Stout given in [3]; we present it here for
the reader’s convenience. Let f ∈ C({(z, w) : |z| ≤ ε0} ∩ S). Note that as Φ−1({(z, w) : |z| ≤
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ε0} ∩ S) = S1(ε0) ∪ S2(ε0), f ◦ Φ ∈ C(S1(ε0) ∪ S2(ε0)). From what we have shown, there is a
sequence of polynimials {Qn}n∈N such that Qn −→ f ◦ Φ uniformly on S1(ε0) ∪ S2(ε0). Let U be
the open, dense set in C2 such that for each ζ ∈ U , Φ−1{ζ} consists of two distinct points ζ(+)

and ζ(−). By the standard theory of analytic covers the function

Pn(ζ) :=
Qn(ζ(+)) +Qn(ζ(−))

2
, ζ ∈ U,

which is holomorphic in U , extends to an entire function. By construction, the sequence of entire
functions {Pn}n∈N converges uniformly on {(z, w) : |z| ≤ ε0} ∩ S to f . Hence P({(z, w) : |z| ≤
ε0} ∩S) = C({(z, w) : |z| ≤ ε0} ∩S).

In view of this last fact, it follows that {(z, w) : |z| ≤ ε0} ∩ S is polynomially convex. The
abstract uniform-algebras argument needed for showing this is precisely the one given in the last
paragraph of the proof of Theorem 1.1. �

4. Technical Lemmas

In this section, we prove the three technical lemmas that we used in the proof of Theorem 1.2.
But we first make the following observation, easily verified, about the quantity κ arising in the
condition (3.8) :

(4.1) κ <
1
2

min
{
π

2k
,

2γ − 1
2γ(3γ + 2)

}
=⇒ κ <

1
2

min
(

1
4
,
π

2k

)
,

which we shall use in several instances below. Firstly, we prove

Lemma 4.1. Let S be the surface in C2 that, in a neighbourhood of the origin, is defined by the
equation

w = zk + σ(z) +G(z),

where

• γ > 1/2,
• σ is a continuous function that is homogeneous of degree k such that |σ(z)| ≤ 2κ|z|k for

some κ satisfying the condition (3.8), and
• G is a continuous function satisfying G(z) = o(|z|k) as z → 0.

There exists a small constant ε0 > 0 such that P({(z, w) : |z| ≤ ε0}∩S) = C({(z, w) : |z| ≤ ε0}∩S).

Proof. We closely follow the techniques used in the proof of Theorem 1.1. As before, let Ψ :
C2 → C2 be defined by Ψ(z, w) := (z, wk). We first show that there exists a δ > 0 such that
Ψ−1({(z, w) : |z| ≤ δ} ∩ S) = ∪k

j=1Sj(δ), where S1(δ), . . . , Sk(δ), are compact sets given by the
equations

Sj(δ) : w = e2πi(j−1)/k z {1 +H(z)}, |z| ≤ δ,

and H satisfies certain useful size estimates. Recall from (3.11) that |2γz2k + |z|2k| ≥ (2γ−1)|z|2k,
and that – because γ > 1/2 – the quantity on the right is strictly positive when z 6= 0. Now, S is



12 GAUTAM BHARALI

the graph of a function G∗ that may be written as

G∗(z) = zk

{
1 +

σ(z)
zk

+
G(z)
zk

}
.

Observe that

a) Owing to the estimate for σ(z) and the remark (4.1)

(4.2)
∣∣∣∣ σ(z)
zk

∣∣∣∣ ≤ 2κ < min
(

1
4
,
π

2k

)
; and

b) limz→0G(z)/zk = 0.

For the above reasons, we can choose the δ > 0 introduced at the beginning of this proof to be so
small that ∣∣∣∣ σ(z)

zk
+
G(z)
zk

∣∣∣∣ ≤ 1
2

∀|z| ≤ δ.

Given this fact, G∗(z) has k distinct kth-roots g∗1(z), . . . , g∗k(z) when z 6= 0, each Sj(δ) is the graph
of g∗j , j = 1, . . . , k, and

(4.3) g∗j (z) = e2πi(j−1)/k z

[
1 +

∞∑
m=1

αm

{
σ(z)
zk

}m

+ o(1)

]
,

where the αm’s are exactly as in the expression (3.1). The infinite series in equation (4.3) represents
a function h that is homogeneous of degree 0, and we write H(z) := h(z)+R(z), where R(z) = o(1)
as z → 0. Arguing as before
(4.4)

sup
|z|=1

|h(z)| ≤
∞∑

m=1

|αm|
{

min
(

1
4
,
π

2k

)}m

= 1−
{

1−min
(

1
4
,
π

2k

)}1/k

< min
(

1
4
,
π

2k

)
.

In view of (4.3) and (4.4), it is possible to find a small constant ε1 > 0 such that

|zH(z)− ζH(ζ)| ≤ sup
|ξ|=1

|h(ξ)| |z − ζ|+ |z| |h(z)− h(ζ)|+ |zR(z)− ζR(ζ)|(4.5)

< |z − ζ| ∀z 6= ζ : |z|, |ζ| ≤ δ, and ∀δ ∈ (0, ε1].

The estimate (4.5) allows us – as in the proof of Theorem 1.1 – to use a result of Wermer [8,
Theorem 1] to conclude that for each Sj(δ), P(Sj(δ)) = C(Sj(δ)), j = 1, . . . , k, assuming, of
course, that 0 < δ ≤ ε1.

Consider the polynomial q(z, w) = zw. For any (z, w) ∈ S1(δ),

Re{q(z, w)} = |z|2 + Re{ |z|2(h(z) +R(z))} ≥ |z|2 − |z|2|h(z)| − |z|2|R(z)|,

|Im{q(z, w)}| ≤ |z|2{ |h(z)|+ |R(z)| }.

In view of the estimate (4.4) and the fact that R(z) = o(1) as z → 0, we can find a small constant
ε2 > 0 such that

Re{q(z, w)} ≥ 3
4
|z|2, |Im{q(z, w)}| < π

2k
|z|2 ∀|z| ≤ δ,

q(S1(δ))  {x+ iy ∈ C : |y| ≤ (2π/3k)x}, where δ ∈ (0, ε2].
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In other words, q(S1(δ)) is a proper subset of the sector W1 that is centered on the positive x-axis,
and has an aperture of (4π/3k). Note, therefore that q(Sj(δ)) is a proper subset of the sector Wj ,
which is simply a copy of W1 rotated by (2π(j − 1)/k), j = 1, . . . , k. Furthermore, Wµ ∩Wν =
{0} ∀µ 6= ν. The details for showing that ∃ε0 > 0 such that P(∪k

j=1Sj(ε0)) = C(∪k
j=1Sj(ε0)) are

no different from those given in the proof of Theorem 1.1. We omit these details. And finally,
from P(∪k

j=1Sj(ε0)) = C(∪k
j=1Sj(ε0)) we conclude, in exactly the same way as in Theorem 1.1,

that P({(z, w) : |z| ≤ ε0} ∩ S) = C({(z, w) : |z| ≤ ε0} ∩ S). �

Next, we prove the requisite lemmas for showing that the polynomial φε(γ) : C2 → C, defined
by equation (3.17), maps the surfaces S1(δ) and S2(δ) – encountered in the proof of Theorem 1.2
– into two sectors in C that intersect only at the origin.

Lemma 4.2. Let Σ1 be the surface in C2 given by the equation

w = zk + σ(z) +G(z),

where γ, σ(z) and G(z) are as in Lemma 4.1. There exist small constants δ1, R1 > 0 such that
φε(γ)({(z, w) : |z| ≤ R1} ∩Σ1) is contained in the sector W (δ1) = {x+ iy ∈ C : |y| ≤ (1/δ1)x}.

Proof. We compute, for (z, w) ∈ Σ1

Re{φε(γ)(z, w)} = −Re
{

2zkσ(z)
4

+
σ(z)2

4
− ε(γ)zkσ(z)

}
+ ε(γ)|z|2k + o(|z|2k),

Im{φε(γ)(z, w)} =
1
2

Im(z2k)− Im
{

2zkσ(z)
4

+
σ(z)2

4
− ε(γ)zkσ(z)

}
+ o(|z|2k).

We consider the following two cases:
Case (i) : γ ≥ 1 and ε(γ) = 3/16.

In view of the estimates on σ(z) – including the upper bound (4.2) – and the remark (4.1), we can
find a R1 > 0 sufficiently small such that if (z, w) ∈ Σ1, we have

Re{φε(γ)(z, w)} >
3
16

(1− 2κ)|z|2k −
{

1
2

+
1
4
· 1
4

}
2κ|z|2k + o(|z|2k)

≥ 3
32

(1− 8κ)|z|2k ∀|z| ≤ R1.(4.6)

Notice that as κ < 1/8, (1− 8κ) > 0 in the expression above.

Case (ii) : 1/2 < γ < 1 and ε(γ) = min{(2γ − 1)/8γ(1− γ), 3/16}.
In this case, we first compute that ∀(z, w) ∈ Σ1

Re{φε(γ)(z, w)} >
2γ − 1

8γ(1− γ)
(1− 2κ)|z|2k −

{
1
2

+
1
4
· 1
2

}
2κ|z|2k + o(|z|2k)

=
2γ − 1

8γ(1− γ)
|z|2k +

2κ
8
|z|2k − 2κ

{
2γ − 1

8γ(1− γ)
+

6
8

}
|z|2k + o(|z|2k)(4.7)

At this point we observe that

2κ ≤ 2γ − 1
2γ(3γ + 2)

<
2γ − 1

8γ − 6γ2 − 1
∀γ ∈ (1/2, 1).
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In view of this fact and the estimate (4.7), we can find a constant R1 > 0 such that if (z, w) ∈ Σ1

Re{φε(γ)(z, w)} >
2γ − 1

8γ(1− γ)
|z|2k +

2κ
8
|z|2k − 2γ − 1

8γ − 6γ2 − 1

{
2γ − 1

8γ(1− γ)
+

6
8

}
|z|2k + o(|z|2k)

>
κ

4
|z|2k + o(|z|2k) >

κ

8
|z|2k ∀|z| ≤ R1.(4.8)

It is of course obvious from the expressions above that there exists a C > 0 such that

(4.9) |Im{φε(γ)(z, w)}| ≤ C|z|2k ∀(z, w) ∈ {(z, w) : |z| ≤ R1} ∩Σ1.

The result follows from (4.6), (4.8) and (4.9). �

Lemma 4.3. Let Σ2 be the surface in C2 given by the equation

w = −
(

1
γ
zk + zk

)
+ σ(z) +G(z),

where γ, σ(z) and G(z) are as in Lemma 4.1. There exists a constant R2 > 0 such that φ({(z, w) :
|z| ≤ R2} ∩Σ2) \ {0} is contained in the open left half-plane.

Proof. Once again, we analyze this problem into two cases.

Case (i) : γ ≥ 1 and ε(γ) = 3/16.
We compute to find that for (z, w) ∈ Σ2

Re{φε(γ)(z, w)} ≤ −
{

1
2γ

+ ε(γ)
}
|z|2k +

{
ε(γ)

(
1
γ

)
+

1
4γ2

}
|Re(z2k)|

+
|z|k|σ(z)|

4

{
2
γ

+ 2 + 4ε(γ) +
|σ(z)|
|z|k

}
+ o(|z|2k)

< −
(

1
2γ

− 1
4γ2

)
|z|2k − 3

16

(
1− 1

γ

)
|z|2k +

|z|k|σ(z)|
4

2 + 3γ
γ

+ o(|z|2k).

The last inequality is the consequence of the estimate (4.2) and the fact that ε(γ) = 3/16. Now,
exploiting the bounds on |σ(z)| and κ, we get

Re{φε(γ)(z, w)} < −
(

1
2γ

− 1
4γ2

)
|z|2k − 3

16

(
1− 1

γ

)
|z|2k +

2γ − 1
8γ2

|z|2k + o(|z|2k)

< − 3
16

(
1− 1

γ

)
|z|2k + o(|z|2k)

< 0 ∀(z, w) ∈ {(z, w) : |z| ≤ R2} ∩Σ2,(4.10)

for some R2 > 0 that is sufficiently small. We can find such an R2 because in this situation
(1− 1/γ) > 0.

Case (ii) : 1/2 < γ < 1 and ε(γ) = min{(2γ − 1)/8γ(1− γ), 3/16}.
Following the computation done in the earlier case, we get

Re{φε(γ)(z, w)} < −
(

1
2γ

− 1
4γ2

)
|z|2k − ε(γ)

(
1− 1

γ

)
|z|2k +

|z|k|σ(z)|
4

2 + 3γ
γ

+ o(|z|2k).
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This estimate is derived from the very first line of the estimate on Re{φε(γ)(z, w)} under Case (i),
coupled with the fact that ε(γ) ≤ 3/16. We now use the fact that ε(γ) ≤ (2γ− 1)/8γ(1− γ) to get

Re{φε(γ)(z, w)} < −
(

1
2γ

− 1
4γ2

)
|z|2k − 2γ − 1

8γ(1− γ)

(
1− 1

γ

)
|z|2k

+
|z|k|σ(z)|

4
2 + 3γ
γ

+ o(|z|2k)

≤ −1
2

(
1
2γ

− 1
4γ2

)
|z|2k +

2κ
4

(
2 + 3γ
γ

)
|z|2k + o(|z|2k).

Applying the fact that 2κ < (2γ − 1)/2γ(3γ + 2) to the last inequality, we see that we can find a
constant R2 > 0 such that Re{φε(γ)(z, w)} < 0 ∀(z, w) ∈ {(z, w) : |z| ≤ R2} ∩Σ2.

Given the last conclusion, and the inequality (4.10), the result is established. �
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[3] F. Forstnerič and E.L. Stout, A new class of polynomially convex sets, Arkiv Mat. 29 (1991), 51-62.

[4] R.C. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice Hall, Inc., Englewood

Cliffs, NJ (1965).
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